1. Black D. (1948). On the rationale of group decision-making. Journal of Political Economy, 56, 2334.
2. Chameni-Nembua C. (1989). Regle majoritaire et distributivite dans le permutoedre. Math. Inform. Sci. Hum., 108, 522.
3. Danilov V.I., Karzanov A.V., Koshevoy G.A. (2010a). Systems of separated sets and their geometric models. Uspekhi Matematicheskikh Nauk (Russian Mathematical Surveys), 65, 4 (394), 67152.
4. Danilov V.I., Karzanov A.V., Koshevoy G.A. (2019). Cubillages of cyclical zonotopes. Uspekhi Matematicheskikh Nauk (Russian Mathematical Surveys), 74, 6 (450), 181244 (in Russian).
5. Danilov V.I., Karzanov A.V., Koshevoy G.A. (2010b). Condorcet domains and rhombus tilings. Economics and Mathematical Methods, 46, ¹ 4, 5568 (in Russian).
6. Danilov V.I., Koshevoy G.A. (2013). Maximal Condorcet domains. Order, 30, 1, 181194.
7. Felsner S., Ziegler G.M. (2001). Zonotopes associated with higher Bruhat orders. Discrete Mathematics, 241, 301312.
8. Fishburn P. (1997). Acyclic sets of linear orders. Soc. Choice Welf., 14, 113124.
9. Manin Yu.I., Shekhtman V.V. (1986). Higher Bruhat orders related to the symmetric group. Functional Analysis and Its Applications, 20, 2, 7475 (in Russian).
10. Monjardet B. (2009). Acyclic domains of linear orders: a survey. In: S. Brans, W. Gehrlein, F. Roberts (eds.). The mathematics of preferebce, choice and order, 136160. Berlin: Springer.
11. Puppe C. (2018). The single-peaked domain revisited: A simple global characterization. J. Econ. Theory, 176, 5580.
12. Puppe C., Slinko A. (2019). Condorcet domains, median graphs and the single-crossing property. Economic Theory, 67, 285318.
Comments
No posts found