1. Долматов А.С. (2007). Математические методы риск-менеджмента. М.: Экзамен.
2. Смирнов С.Н., Полиматиди И.В. (2021). Гарантированный детерминистский подход к маржированию на срочном рынке // Экономика и математические методы. Т. 57. № 2. С. 96–105.
3. Bernhard P., Engwerda J.C., Roorda B. et al. (2013). The interval market model in mathematical finance: Game-theoretic methods. New York: Springer.
4. Bielecki T.R., Cialenco I., Feng S. (2018). A dynamic model of central counterparty risk. arXiv: 1803.02012 [q-fin.RM]
5. Black F., Scholes M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 3, 637–654.
6. Black F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–179.
7. Coffman Jr.E.G., Matsypura D., Timkovsky V.G. (2010). Strategy vs risk in margining portfolios of options. Quarterly Journal of Operations Research, 8, 375–386.
8. Cox J.C., Ross S.A., Rubinstein M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7, 3, 229–263.
9. Eldor R., Hauser S., Yaari U. (2011). Safer margins for option trading: How accuracy promotes efficiency. Multinational Finance Journal, 15, 3–4, 217–234.
10. Faruqui U., Huang W., Tak´ats E. (2018). Clearing risks in OTC derivatives markets: The CCP-bank nexus. BIS Quarterly Review December, 73–90.
11. Ghamami S. (2015). Static models of central counterparty risk. International Journal of Financial Engineering, 2, 1–36.
12. Peters H., Wakker P. (1986). Convex functions on non-convex domains. Economics Letters, 22, 2, 251–255.
13. Schachermayer W., Teichmann J. (2008). How close are the option pricing formulas of Bachelier and Black Merton–Scholes? Math. Finance, 18, 1, 155–170.
14. Smirnov S. N. (2019). Guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman-Isaacs equations. In: L.A. Petrosyan, V.V. Mazalov, N.A. Zenkevich (eds.) “Frontiers of Dynamic Games”. New York: Springer, 267–288.
Комментарии
Сообщения не найдены