3. Корбут А. А., Финкельштейн Ю. Ю. Дискретное программирование. М.: Наука,

4. Шевченко В. Н. Об одной модификации третьего алгоритма Гомори. В сб. Тезисы докладов на 3-й Всесоюзной конференции по теоретической кибернетике. Новосибирск: 1974.

5. Рокафеллар Р. Выпуклый анализ. М.: Мир. 1973.

Поступила в редакцию 19 X 1976

модель равновесия с учетом налогов на обмен ЕФИМОВ Б. А., ШАПОВАЛОВ А. С.

(Москва)

В ряде работ, например в [1-3], налог в моделях экономического равновесия интерпретируется как отчисление доли дохода участника экономической системы в пользу планирующего органа или государства. Как правило, участники могут свободно обмениваться товарами, не затрачивая ничего на обмен [4]. Интересно выяснить, как влияют дополнительные затраты (налог за обмен) на поведение участников обмена. Часто в качестве дополнительного участника вводилось «госу-дарство» или некоторый центральный орган с собственным предпочтением, а налоги использовались для производства общественных благ. Попытаемся рассмотреть вопрос о затратах с другой стороны. При установлении обычного равновесия, в случае когда модель удовлетворяет всем стандартным требованиям, каждый участник получает в обмен на свои начальные запасы набор равновесных благ. Предполагается, что он должен обладать полной информацией обо всем происходящем на рынке и возможностями осуществлять любые сделки с другими партнерами без ограничений. Если число участников велико, то удовлетворение потребностей любого отдельного ее участника без учета ограничений возможно в силу того, что его спрос не сравним с суммарными ресурсами экономики. В любом случае участники ничего дсполнительно не затрачивают при получении равновесных наборов. Это не совсем реалистичное предположение.

Рассмотрим модель, в которой налоги зависят от объема сделок и от выбора всеми участниками своих равновесных наборов. Экономический смысл налогов может быть совершенно различным в зависимости от интерпретации модели. Затраты участников, необходимые для осуществления сделки, можно интерпретировать как члату за информацию о наличии и дефиците благ, о возможности заключения сделки; как транспортные расходы, связанные с доставкой товаров от одного потребителя к другому, как натуральные налоги — доли отчислений от общего количества продукта, взимаемые за право заключения сделки и т. д. Естественным выглядит предположение, что если участник i выберет в качестве равновесного набора свой начальный запас ω_i , то ему ничего не надо будет платить. Если же выбран вектор x_i , меньший, чем ω_i , то затраты, возможно, неизбежны (например, на то, чтобы избавиться от части своих запасов). Предположение, что при выборе ω_i участнику ничего не надо платить, обеспечит непустоту бюджетных множеств нашей модели. Будем считать, что если участник і выбрал больший набор товаров, то и заплатить ему надо больше.

Допустим, кроме того, что как полезность участника і, так и величина налога на обмен его набора товаров зависят от выбора других участников. От этого выбора булет зависеть и бюджетное множество участника і, представляющее множество оудет зависеть и общество множество участника і, представляющее множество наборов, стоимость которых плюс величина налога на их обмен не превосходит стоимости начального набора. Под равновесием будем понимать равновескую цену и такой набор векторов из бюджетных множеств участников (при равновесных цеи такои насор максимизируют их функции полезности на этих множествах.

Дель данной работы состоит в построении равновесной модели обмена с учетом

налогов, независимых от цены. налогов, независимых от цены. $N = \{1, \ldots, n\}$ — множество участников; X_i — непустой выпуклый компакт в R_+ ! (потребительское множество участника i), $i \in N$, где R^l — про-

странство товаров $(l-их число); X = \prod X_i -$ произведение X_i , являющееся ры-

ночным товарным пространством; $u_i: X \rightarrow R_+$ — непрерывная на X, вогнутая, монотонночным товаривых полезности участника i; ω_i \mathfrak{G} int X_i — начальный запас участника i, $\Delta = \{p \in R^l : p_i \geqslant 0, \sum p_i = 1\}$ — симплекс цен; $s_i : X \rightarrow R_+^1$ непрерывная на X, вы-

пуклая функция. Значение функции $s_i(x_1,\ldots,x_i,\ldots,x_n)$ есть величина налога на обмен набора x_i при выборе остальными участниками наборов $x_i, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$. Предполагаем, что $s_i(x_i, \ldots, \omega_i, \ldots, x_n) = 0$ для любых $x_j \in X_j$, $j \neq i$. Определение 1. Рынком $\mathscr E$ с налогом на обмен будем называть

$$\mathscr{E} = \{N, \{X_i\}_{i \in \mathbb{N}}, \{u_i\}_{i \in \mathbb{N}}, \{\omega_i\}_{i \in \mathbb{N}}, \{s_i\}_{i \in \mathbb{N}}\}.$$

Определение 2. Бюджетным множеством в модели служит

$$B_i(x, p) = \{x_i \in X_i : px_i + s_i(x_1, \ldots, x_i, \ldots, x_n) \leq p\omega_i\}.$$

Предполагается, что $x_1,\ldots, x_{i-1}, x_{i+1},\ldots, x_n$ фиксированы, а x_i пробегает по-

требительское множество X_i . Определение 3. Набор (\bar{x}, \bar{p}) , где $\bar{x} = (\bar{x}_1, \dots, \bar{x}_n)$, $\bar{x}_i \in X_i$, $\bar{p} \in \Delta$, называется равновесием для рынка \mathscr{E} , если: 1) $\bar{x}_i \in \tilde{B}_i(\bar{x}, \bar{p})$, 2) $u_i(\bar{x}_1, \dots, \bar{x}_n) = \max \{u_i(\bar{x}_1, \dots, x_i, \dots, x$

$$\ldots, \, \bar{x}_n): x_i \in B_i(\bar{x}, \, \bar{p})\}, \, 3) \quad \sum_{i=1}^{\overline{n}} \bar{x}_i \leq \sum_{i=1}^{\overline{n}} \omega_i.$$

Заметим, что при $s_i(x) = 0$ для любых $x \in X$, $i \in N$, модель становится обычной моделью равновесия.

Теорема 1. Рынок 8 имеет равновесие. Для доказательства сопоставим рынку в обобщенную игру Г. Напомним (см. [5]), что обобщенной игрой N лиц называется $\Gamma = \{T, Y_i, A_i, P_i\}$, где $T = \{1, \dots, t\}$ —

множество участников; $Y_i = R_+{}^l$ – множество стратегий участника i;

множество ситуаций игры; $A_i: Y \rightarrow 2^{Y_i}$ – отображение ограничения; $P_i: Y \rightarrow 2^{Y_i}$ – отображение ограничения бражение предпочтения.

Определение 4. Вектор $\bar{y} \in Y$ называется равновеснем для игры Γ , если: $\bar{y}_i \in A_i(\bar{y})$, $P_i(\bar{y}) \cap A_i(\bar{y}) = \varnothing$ для всех $i \in T$.

Для обобщенных игр имеет место следующая теорема.

Теорема 2. (см. [5]). Πy сть: 1) $Y_i \subset R^l$ — непустой выпуклый компакт; 2) отображение A_i получение A_i получен жение A_i полунепрерывно сверху, причем $A_i(y)$ непустой выпуклый компакт для всех $y \in Y$; 3) отображение P_i имеет открытый график в $Y \times Y_i$; 4) для каждого $y \in Y$ его i-я компакт координата y_i не принадлежит Со $P_i(y)$, где Со $P_i(y)$ – выпуклая оболочка множества $P_i(y)$ Р, (у). Тогда игра Г имеет равновесие.

Сопоставим нашему рынку в обобщенную игру Г(в) следующим образом. Положим

$$T = \{1, \ldots, n, n+1\}, \quad Y_i = X_i, \quad i = 1, \ldots, n, \quad Y_{n+1} = \Delta, \\ P_i(x_1, \ldots, x_n, p) = \{z_i \in X_i : u_i(x_1, \ldots, z_i, \ldots, x_n) > u_i(x_1, \ldots, x_i, \ldots, x_n)\},$$

$$P_{n+1}(x_1,\ldots,x_n,p) = \left\{ p' \in \Delta : p' \left(\sum_{i=1}^n x_i - \sum_{i=1}^n \omega_i \right) > p \left(\sum_i x_i - \sum_i \omega_i \right) \right\}, \quad i=1,\ldots,n.$$

Заметим, что P_i , $i=1,\ldots,n$ от p фактически не зависит, в то время как P_{n+1} зависит от р

$$A_i(x_1,..., x_n, p) = B_i(x, p), i=1,..., n,$$

 $A_{n+1}(x_1,..., x_n, p) = \Delta$ при всех $x \in X$.

Лемма. Если $(\bar{y}_1, \ldots, \bar{y}_{n+1})$ — равновесие для игры $\Gamma(\mathcal{S})$, то соответствующий ему набор $(\bar{x}_1, \ldots, \bar{x}_n, \bar{p})$, $\bar{x}_i = \bar{y}_i$, $i = 1, \ldots, n$, $\bar{p} = y_{n+1}$, — равновесие для рынка \mathcal{S} . Доказательство. Пусть $(\bar{y}_1, \ldots, \bar{y}_{n+1})$ — равновесие в $\Gamma(\mathcal{S})$. Тогда условие 1) опременента вие 1) определения 3 $\bar{x}_i \in \tilde{B}_i(\bar{x}, \bar{p}), \bar{p} \in \Delta,$

выполняется по определению $A_i(y)$.

Условие 2) определения 3 выполняется в силу того, что если существует $z_i \in \mathcal{B}_i(\overline{x}, \overline{p})$ такое, что $u_i(\overline{x}_1, \dots, \overline{x}_n) > u_i(\overline{x}_1, \dots, \overline{x}_n)$, то $z_i \in P_i(\overline{y}_1, \dots, \overline{y}_{n+1})$ и $P_i(\overline{y}) \cap A_i(\overline{y}) \neq \emptyset$, т. е. получается противоречие с определением 4.

Проверим условие 3) определения 3. Пусть $\sum \bar{x}_i \leq \sum \omega_i$ неверно. Тогда су-

ществует j такое, что $\sum_{i=1}^{n} x_i^j - \sum_{i=1}^{n} \omega_i^j > 0$. Возьмем $p' \in \Delta$ вида $p' = (0, \dots, 1, \dots, 0)$

(единица стоит на j-м месте). Тогда $p'\left(\sum_{i=1}^n \bar{x}_i - \sum_{i=1}^n \omega_i\right) > 0$, в то время как

$$ar{p}\Big(\sum_{i=1}^n ar{x}_i - \sum \omega_i\Big) = -\sum_{i=1}^n s_i(ar{x}) \leqslant 0.$$
 Тэким образом, имеем $P_{n+1}(ar{x}, \ ar{p}) \cap \Delta \neq \emptyset$,

чего быть не может.

Докажем теперь следующую теорему. Теорема 3. Игра $\Gamma(\mathcal{E})$ имеет равновесие.

Теоремы 3. Проверим выполнение для игры $\Gamma(\mathcal{E})$ условий 1)—4) теоремы 2. То, что Y_i — непустой выпульий компакт, выполняется из определения X_i и Δ . Имеем $A_{n+1}(y) = \Delta$ для всех $y \in Y$. Ясно, что это отображение удовлетворяет всем гребованиям условия 2. Пусть $1 \le i \le n$. Имеем

 $A_i(x, p) = \widetilde{B}_i(x, p) = \{x_i \in X_i : px_i + s_i(x) \leq p\omega_i\}.$

Установим замкнутость этого отображения. Тогда по теореме [4, стр. 95] оно будет в силу компактности X полунепрерывно сверху. Обозначим $\phi_i(x, z_i) = p(z_i - \omega_i) + s_i(x_1, \dots, z_i, \dots, x_n)$, тогда A_i — множество таких точек $z_i \in X_i$, что $\phi_i(x, z_i) \le 0$. Так как ϕ_i — непрерывная функция, то из условий $x_v \to x$, $x_v \in X$, $y_v \in A_i(x_v) = X_i$, $y_v \to y$, $x \in X$, $y \in X_i$, $x \in X_i$, ности φ_i . Выпуклость A_i следует из выпуклости φ_i , которая есть сумма двух выпуклых функций.

Проверим свойство 3. Пусть график G_{p_i} не является открытым множеством. Тогда существует точка $(y, z_i) \in G_{p_i}$ такая, что в любой ее окрестности U содержатся точки $(y_v, z_{i_v}) \notin G_{p_i}$. Выберем последовательность таких точек, сходящуюся к (y, z_i) .

Тогда

$$(y_{\nu}, z_{i_{\nu}}) \notin G_{p_i} \Rightarrow u_i(y_{i_{\nu}}, \dots, z_{i_{\nu}}, \dots, y_{n_{\nu}}) \leqslant u_i(y_{i_{\nu}}, \dots, y_{i_{\nu}}, \dots, y_{n_{\nu}}).$$

Но в силу непрерывности u_i на X мы имели бы

$$u_i(y_1,\ldots,z_i,\ldots,y_n) \leqslant u_i(y_1,\ldots,y_i,\ldots,y_n),$$

т. е. $(y, z_i) \notin G_{p_i}$, чего быть не может. Следовательно, все точки G_{p_i} внутренние.

Проверим свойство 4. Множество $P_i(y)$ выпукло при любом $y \in Y$ в силу вогнутости $U_i(y)$ и $y_i \notin P_i(y)$ по определению. Итак, игра $\Gamma(\mathscr{E})$ имеет равновесие. Теорема

дзана. Доказательство основ<mark>ной те</mark>оремы 1 следует из комбинации леммы и теоремы <mark>3.</mark> ЛИТЕРАТУРА

1. Fourgeaud C. Contribution à l'étude du rôle des administrations dans la théorie mathématique de l'equilibre et l'optimum. — Econometrica, 1969, v. 37, № 2.

2. Булонь П., Ефимов Б. А. Существование равновесия в модели Фуржо с континуумом потребителей. — В кн. Моделирование экономических процессов. М.: Изд-

3. Полтерович В. М. Модели экономического равновесия как инструмент оптимального планирования. В кн. Моделирование внутренних и внешних связей отраслевых систем. Новосибирск: Наука, 1978.

4. Никайдо X. Выпуклые структуры и математическая экономика. М.: Мир, 1972. 5. Shafer W., Sonnenschein H. Equilibrium in Abstract Economics without Ordered Preferences. - J. Math. Econ., 1975, v. 2.

Поступила в редакцию 2 II 1978