СТАТИСТИЧЕСКИЕ МЕТОДЫ И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ВЫЧИСЛЕНИЕ СТАТИСТИЧЕСКИХ СВОЙСТВ ОЦЕНОК ПАРАМЕТРОВ РЕГРЕССИИ ПРИ НАЛИЧИИ АПРИОРНЫХ ОГРАНИЧЕНИЙ-НЕРАВЕНСТВ

© 1994 Корхин А.С.

(Днепропетровск)

Рассмотрена линейная регрессия при наличии линейных ограниченийнеравенств на параметры регрессии; условия состоятельности оценок, когда число ограничений не больше двух. Предложены методы вычисления матрицы средних квадратов оценок.

1. ВВЕДЕНИЕ

Решение экономических задач сводится к оцениванию параметров регрессии при наличии наложенных на них ограничений-неравенств (см., например, [1–3]). Важный аспект таких задач – вычисление статистических свойств оценок параметров и прежде всего матрицы средних квадратов ошибок (СКО), которая заменяет матрицу ковариаций из-за смещения оценок, обусловленного ограничениями. В работах, посвященных этому вопросу, рассматриваются линейные регрессии с линейными ограничениями. Основная трудность, с которой сталкиваются исследователи, – неортогональность независимых переменных (регрессоров), что типично для экономических процессов. Поэтому и в литературе исследован лишь случай одного ограничения (см. [4]), а при наличии двух анализируется линейная модель с двумя регрессорами с ограничениями на знак параметров [5]. Очевидно, практическое использование таких моделей весьма ограничено.

Для общего случая линейной регрессии (произвольное число ограничений, регрессоры неортогональны) в [6] предлагается оценивать матрицу СКО так называемой неусеченной ковариационной матрицей, определяемой как ковариационная матрица оценок для ограничений-равенств. В качестве таковых берутся активные ограничениянеравенства, т.е. обращающиеся в равенства для рассматриваемой выборки. Разумеется, эта оценка точности определения параметров будет грубой.

В [5, 6] не исследуется состоятельность оценок точности. Так, в [5] СКО определения параметров заданы в функции их истинных значений и истинного значения дисперсии шума. Однако на практике эти величины неизвестны. Если же их заменить на оценки, то, как показано в разд. 6, полученные оценки СКО не всегда будут состоятельными.

Способ определения состоятельной оценки матрицы СКО описан в [7], где рассмотрена регрессия

$$v_{t} = x'_{t} \alpha^{0} + \varepsilon_{t}, t = 1, ..., T,$$

(1)

при априорных ограничениях

$$g_i(\alpha) = g'_i \alpha + B_i < o, \ i \in I,$$

где $y_t \in R^1$ – независимая переменная; $x_t \in R^n$ – регрессор; $\alpha \in R^n$ – параметр регрессии, α^0 – его истинное значение; $\varepsilon_t, t = 1, ..., T$ – последовательность центрированных независимых одинаково распределенных случайных величин; $g_i \in R^n$ и $B_i \in R^1$ – известные величины; штрих означает транспонирование. Предполагается, что α^0 удовлетворяет (2), причем

$$g'_{i}\alpha^{0} \in B_{i}, \ i \in I_{1}^{0}, \ g'_{i}\alpha^{0} < B_{i}, \ i \in I_{2}^{0}, \ I_{1}^{0} \cup I_{2}^{0} = I,$$
(3)

где множества I_1^0 и I_2^0 неизвестны.

Положим, $I_T = \{i: -\xi \le g_i(\alpha_T) \le 0, i \in I\}$, где α_T – оценка методом наименьших квадратов (МНК) α^0 при учете ограничений (2), $\xi > 0$ таково, что

$$I_1^{\circ} = \{i: -\xi \le g_i(\alpha_T) \le 0, \ i \in I\}.$$
⁽⁴⁾

В [7] показано, что при линейной независимости векторов $g_{i,i} \in I$, состоятельной выборочной оценкой матрицы СКО $K_T^0 = TM(\alpha_T - \alpha^0)(\alpha_T - \alpha^0)'$ является матрица $K_T = MU_TU_T'$, где случайная величина U_T – решение задачи квадратичного программирования

$$\frac{1}{2}X'R_T X - Q'_T X \to \min, \quad g'_i X \le 0, \quad i \in I_T$$
(5)

для всех реализаций случайного вектора $Q_T \sim N(0, (\alpha_T^*)^2 R_T)$. Здесь α_T^* – выборочное значение α_T ; $(\sigma_T^*)^2$ – выборочная оценка σ^2 - дисперсии ε_t ; R_T – матрица размерности n * n, $R_T = T^{-1} \sum_{t=1}^T X_t X'_t$. Как видно из (5), K_T нелинейно связана с α_T зависимостью $I_T = I_T(\alpha_T^*)$.

В [7] предложен общий приближенный способ определения K_T методом Монте-Карло. Он состоит в том, что для каждой реализации Q_T , вычисляемой на ЭВМ, определяется U_T , т.е. решается (5). Затем по реализациям U_T рассчитывается K_T . Для использования (5) необходимо знать ξ (см. [4]). На практике достаточно считать ξ машинным нулем, например для ЕС ЭВМ $\xi = 10^{-64}$. Это означает, что индексы тех ограничений образуют множества I_T , которые при определении α_T^* стали активными: для них с точностью вычислений на ЭВМ $g_i(\alpha_T^*) = 0$.

Расчет K_T методом Монте-Карло имеет некоторые недостатки: результат получается с погрешностью, необходимо многократно решать задачу квадратичного программирования. Поэтому важно уметь точно вычислять K_T по крайней мере для небольшого количества ограничений *m*. Такая задача решается в разд. 2 для $m \le 2$. При этом число ограничений в (2) может быть больше двух. Важно, чтобы для конкретной выборки число активных ограничений не превышало двух.

В качестве оценки смещения $\alpha_T S_T^0 = \sqrt{T} M(\alpha_T - \alpha^0)$ предлагается $S_T = \sqrt{T} M U_T$. Качественная зависимость S_T от α_T^* аналогична связи $K_T c \alpha_T^*$. В разд. 3 доказывается состоятельность S_T и приводится алгоритм точного вычисления S_T при $m \le 2$. В разд. 4 K_T и S_T рассчитываются для $m \le 2$ и n = 4. В разд. 5 описывается машинный эксперимент по оценке влияния числа реализаций на точность вычисления K_T и S_T малой выборки сравниваются точные значения K_T и S_T с K_T^0 и S_T^0 . В разд. 6 анализируется [5].

6*

(2)

1. Преобразование исходной задачи для m = 2. Для упрощения опустим индексы T в (5), а также у K_T^0 , K_T и положим $R = R_T$. Тогда (5) примет вид

$$\frac{1}{2}X'RX - Q'X \to \min, \ g'_iX \le 0, \ i = 1, \ 2.$$
(6)

Преобразуем (6). Пусть $\Lambda = \text{diag}(\lambda_i)$, i = 1, ..., n, где $\lambda_i - i$ -е собственное значение *R* и *C* – ортогональная матрица размерности $n \times n$ такая, что *C'RC* = Λ . Положив $X_1 = \Lambda^{\frac{1}{2}}C^{-1}X$, получим для ограничений в (6)

$$a_i X_1 \leq 0, \ i = 1, 2,$$
 (7)

где $a'_i = g'_i C \Lambda^{-1/2}$. Повернем систему координат так, чтобы в новой системе $X_2 = (x_1^{(2)}, ..., x_n^{(2)})'$ гиперплоскость $x_n^{(2)} = 0$ совпала с гиперплоскостью $a'_2 X_1 = 0$. При этом старая и новая системы координат будут связаны соотношением $X_1 = D_1 X_2$, где D_1 – некоторая ортогональная матрица. В результате преобразования (7) примет вид

$$a_1'D_1X_2 = e_1'X_2 = \sum_{i=1}^n e_{1i} x_i^{(2)} \le 0,$$

$$a_1'D_1X_2 = e_2'x_2 = e_{2n} x_n^{(2)} \le 0.$$

Рассмотрим гиперплоскость, являющуюся пересечением гиперплоскостей $e_1'X_2 = 0$ и $e_2'X_2 = 0$. Ее уравнение

$$\sum_{i=1}^{n-1} e_{1i} x^{(2)} = 0.$$
(8)

Положим $Z = D'_2 X_2$, где D_2 – ортогональная матрица такая, что гиперплоскость (8) совпадает с гиперплоскостью $z_{n-1} = 0$, где $z_i - i$ -я компонента Z. Очевидно, для n = 2 $D_2 = J_n$, где J_n – единичная матрица размерности $n \times n$. Нетрудно убедиться, используя (8), что $D_2 = \left| \frac{\tilde{D}_2}{0} \right| \left| \frac{0}{1} \right|$, где \tilde{D}_2 – ортогональная матрица размерности

$$(n-1) \times (n-1).$$

В результате преобразований имеем $X = C \Lambda^{-\frac{1}{2}} D_1 D_2 Z$. Подставив это выражение в (6), получим

$$\frac{1}{2}Z'Z - P'Z \to \min_{2}$$

$$b_{1}'Z = b_{1, n-1}z_{n-1} + b_{1n}z_{n} \le 0,$$
(10)

$$b_1' Z = b_{2n} z_n \le 0, \tag{11}$$

где $P = D'_2 D_1^1 \Lambda^{-\frac{1}{2}} C'Q$, $b'_i = g'_i C \Lambda^{-\frac{1}{2}} D_1 D_2$. Легко установить, что $P \sim N(0, \sigma^2 J_n)$. Для вычисления b_i , i = 1, 2, необходимо знать матрицы C, Λ, D_1 и D_2 , которые можно определить, пользуясь известными методами теории матриц (см., например, [8]). Пример вычисления этих матриц приведен в разд. 4.

Запись (6) в виде (9)-(11) является исходной для дальнейших выкладок. Она также полезна при приближенном определении К методом Монте-Карло, так как упрощает вычисления на ЭВМ. Пусть V – решение (9)-(11), определенное для всех реализа-

Рис. 1

ций *P*. Из сказанного следует $U = C\Lambda^{-\frac{1}{2}}D_1D_2V$, где U – решение (6). Отсюда $K = C\Lambda^{-\frac{1}{2}}D_1D_2K_VD_2'D_1'\Lambda^{-\frac{1}{2}}C'$, (12)

где $K_V = MVV'$.

2. Вычисление K_V для m = 2. Обозначим пересечение гиперплоскостей ω_1 (уравнение $b'_1 Z = 0$) и ω_2 (уравнение $b'_2 Z = 0$) с гиперплоскостью $z_i = 0$, i = 1, ..., n - 2, соответственно Π_1 и Π_2 . Эти прямые и угол Φ между ω_1 и ω_2 , который находится

								I dostalga 1
Вели- чины	Вариант допустимой области							
Star Server	.1	2	3	4	5	6	7	8
b1,n-1	>0	< 0	< 0	> 0	> 0	< 0	< 0	> 0
b_{1n}	>0	>0	< 0	< 0	> 0	>0	< 0	< 0
b2n	< 0	< 0	< 0	< 0	> 0	>0	> 0	> 0
Ф	Φ ₀	Φ ₀	$\frac{\pi}{2} + \Phi_0$	$\frac{\pi}{2} + \Phi_0 \; .$	$\frac{\pi}{2} + \Phi_0$	$\frac{\pi}{2} + \Phi_0$	Φ ₀	Φ ₀
α1	π-Φ	0	0	πΦ	π	-Φ	-Φ	π
α2	π	Ф	Ф	π	π+Φ	0	0	π+Φ
μ1	-1	1	-1	1	1	-1	1	-1
μ2	-1	1	1	-1	-1	1	1	-1

Таблина 1

внутри ω_4 – допустимой области, задаваемой (10), (11), приведены на рис. 1. Там же представлены все восемь возможных вариантов ω_4 . Связь вариантов с Φ (см. его определение в (37)) и коэффициентами в (10), (11) показана в табл. 1, смысл α_1 и α_2 , μ_1 и μ_2 объясняется ниже.

В табл. 1 $\Phi_0 = \arccos(|b_{1n}|/\sqrt{b_{1,n-1}^2 + b_{1n}^2}).$

Как видно из рис. 1, сосредоточение массы на гиперплоскостях ω_1 и ω_2 определяется теми реализациями *P*, для которых ограничения (10), (11) активны. Сосредоточение массы на гиперплоскости ω_3 , являющейся пересечением ω_1 и ω_2 (на рис. 1 ей соответствует начало координат), определяется одновременной активностью ограничений (10) и (11). В области ω_4 сосредоточение массы определяется реализациями *P*, для которых решение (9)–(11) лежит внутри ω_4 : все ограничения неактивны. В силу распределения единичной массы по областям ω_i , i = 1,..., 4, функция распределения V F(Z) не будет непрерывной. Поэтому элементы $K_V m_{ij}$ определяются интегралом Лебега – Стилтьеса

$$m_{ij} = \int z_i z_j dF(Z) = \sum_{k=1}^4 \int z_i z_j dF(Z) = \sum_{k=1}^4 m_{ij}^{(k)}, \ i, \ j = 1, \dots, n.$$
(13)

Для вычисления m_{ij}^k , k = 1, 2, рассмотрим общий случай, когда уравнение гиперплоскости ω_k имеет вид $b'_k Z = 0$, $b_k = (b_{1k}, ..., b_{nk})'$. Чтобы проиллюстрировать смысл дальнейших выкладок, обратимся к рис. 2 (здесь n = 2). Пусть решение (9) $Z_0 = P$ находится вне допустимой области, находящейся над прямой П. Тогда решение (9)-(11) \tilde{Z} – проекция Z_0 на П. Очевидно, \tilde{Z} – решение этой задачи для всех случаев, когда P находится на нормали H к прямой П в точке \tilde{Z} . Таким образом, в окрестности точки \tilde{Z} , принадлежащей гиперплоскости ω_k , будет сосредоточена масса

$$dF(Z) = dF(\tilde{Z}) = \varphi_k(\tilde{Z})d\omega_k, \quad Z = \tilde{Z} \in \omega_k, \tag{14}$$

где

$$\varphi_k(\tilde{Z}) = \int_{t_1}^{t_2} f(Z(t)) ||b_k|| dt.$$
(15)

Здесь $Z(t) = \tilde{Z} + b_k t$ – уравнение нормали к ω_t в точке \tilde{Z} , f(Z) – плотность распределения P

$$f(Z) = c_n^{-1} \exp(-Z'Z/2\sigma^2),$$
(16)

где $c_n = (\sigma \sqrt{2\pi})^n$. В (15) $t_1 = 0, t_2 = \infty$, так как интегрирование ведется вдоль части нормали, лежащей по одну сторону от ω_k , вне допустимой области $b'_k Z \le 0$.

$$m_{ij}^{(k)} = \int_{\omega_k} \tilde{z}_i \tilde{z}_j \, \varphi_k(\tilde{Z}) \, d\omega_k, \ i, \ j = 1, ..., \ n.$$
(17)

Подставив уравнение нормали Z(t) в (16), получим с учетом того, что $b'_k Z = 0$,

$$f(Z(t)) = c_n^{-1} \exp(||b_k||^2 t^2 + \tilde{Z}' W \tilde{Z} / 2\sigma^2),$$
(18)

где $W = (J_n - b_k b'_k) ||b_k||^2$. Из (15) и (18) следует

$$\varphi_k(\tilde{Z}) = (1/2c_{n-1})\exp(-\tilde{Z}'W\tilde{Z}/2\sigma^2).$$
⁽¹⁹⁾

Вычисление $m_{ij}^{(1)}$. Для этого случая, согласно (10), $b_1 = (0, ..., 0, b_{1, n-1}, b_{1n})'$. Следовательно, $W = \left| \frac{J_{n-2} |0|}{0 |w|} \right|$, где w – симметричная матрица размерности 2 × 2. Ее

элементы: $w_{ii} = b_{1, n-2+i}/||b_1||^2$, $w_{ij} = -b_{1, n-1}b_{1n}/||b_1||^2$. С целью упрощения диагонализируем W. Положим $(z_{n-1}, z_n)' = D_3(\beta_{n-1}, \beta_n)'$, где $D_3 -$ такая ортогональная матрица, что в новой системе координат в пространстве R^2 прямая П (см. рис. 2) совпадает с осью $\beta_2 = 0$ (в общем случае $\beta_n = 0$). Вычисление D_3 аналогично определению D_1 и D_2 . Нетрудно показать, что элементы D_3 задаются выражениями

$$d_{11}^{(3)} = \frac{|b_{1n}|}{||b_1||}, \quad d_{12}^{(3)} = \frac{b_{1, n-1}}{||b_1||}, \quad d_{21}^{(3)} = -\frac{b_{1, n-1} \operatorname{sign} b_{1n}}{||b_1||}, \quad d_{22}^{(3)} = \frac{b_{1n}}{||b_1||}.$$
(20)

Введенная замена координат задается так

$$Z = \left| \frac{J_{n-2}}{0} \right| \frac{0}{D_3} \right| \beta, \ \beta = (\beta_1, \dots, \beta_n)'.$$
(21)

В новой системе координат уравнение $\omega_1\beta_n = 0$. Подставив его в (21), получим,

151

используя (20), уравнение ω₁ в параметрической форме

$$\tilde{z}_i = \beta_i, \ i = 1, ..., \ n-2, \ \tilde{z}_{n-1} = d_{11}^{(3)} \beta_{n-1}, \ \tilde{z}_n = d_{21}^{(3)} \beta_{n-1},$$
(22)

откуда, согласно (19),

$$\varphi_1(\tilde{Z}) = \varphi_\beta(\tilde{\beta}) = \frac{1}{2} c_{n-1} \exp(-\tilde{\beta}' \tilde{\beta} / 2\sigma^2), \qquad (23)$$

где $\tilde{\beta} = (\beta_1, ..., \beta_{n-1})$. Нетрудно показать с помощью (20) и (22), что $d\omega_1 = d\beta_1 ... d\beta_{n-1}$. Подставив это выражение, а также (22) и (23) в (17) и проделав необходимые выкладки, перейдем от поверхностного к (*n*-1)-кратному интегралу

$$m_{ij}^{(1)} = \lambda_{ij} \int_{0-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{\infty}^{\infty} L(\tilde{z}_i \tilde{z}_j) \varphi_{\beta}(\tilde{\beta}) d_{\beta_1} \dots d_{\beta_{n-1}},$$
⁽²⁴⁾

где $L(\tilde{z}_i \tilde{z}_j) = \beta_i \beta_j$, i, j = 1, ..., n - 2; $L(\tilde{z}_i \tilde{z}_j) = \beta_{n-1}^2$, i, j = n, n - 1; $L(\tilde{z}_i \tilde{z}_j) = \beta_i \beta_{n-1}$, i = 1, ..., n - 2, j = n-1, n. Переменная β_{n-1} может иметь отличающийся от приведенного в (24) предел изменения (см. рис. 1): $-\infty \leq \beta_{n-1} \leq 0$, что не влияет на результат вычисления $m_{ij}^{(1)}$. В (24) $\lambda_{ij} = 1, i, j = 1, ..., n-2, \lambda_{i, n-1} = d_{11}^{(3)}, \lambda_{in} = d_{21}^{(3)}, i = 1, ..., n-2, \lambda_{i, n-1} = [d_{11}^{(3)}]^2$, $\lambda_{n, n-1} = d_{11}^{(3)} d_{21}^{(3)}, \lambda_{nn} = [d_{21}^{(3)}]^2$. Очевидно, $\lambda_{ij} = \lambda_{ji}, i, j = 1, ..., n$. Из (24) получаем

$$m_{ii}^{(1)} = \lambda_{ii}\sigma^2 / 4, \ i = 1,...,n, \ m_{ij}^{(1)} = 0, \ i, \ j = 1,...,n, \ i \neq j$$

кроме

$$m_{n-1, n}^{(1)} = \lambda_{n, n-1} \sigma^2 / 4.$$
⁽²⁵⁾

Вычисление $m_{ij}^{(2)}$. Имеем, согласно (11), $b_2 = (0, ..., 0, b_{2n})'$. В этом случае в (19) $W = J_{n-1}$ и тогда

$$\varphi_2(\tilde{Z}) = (1/2c_{n-1})\exp(-\tilde{Z}'\tilde{Z}/2\sigma^2),$$
(26)

где $\tilde{Z} = (\tilde{z}_1, ..., \tilde{z}_{n-1})'$. Кроме того,

$$d\omega_2 = d\tilde{z}_1, \dots, d\tilde{z}_{n-1}.$$

27

Из последних двух соотношений, уравнения $\omega_2 \tilde{z}_n = 0$ и (17) получим $m_{n, n-1}^{(2)} = m_{nn}^{(2)} = 0$ и для i, j = 1, ..., n-1

$$m_{ij}^{(2)} = \frac{1}{2c_{n-1}} \int_{\omega_2} \tilde{z}_i \tilde{z}_j \exp(-\tilde{Z}'\tilde{Z}/2\sigma^2) d\tilde{z}_1 \dots d\tilde{z}_{n-1},$$

где

$$\omega_2 = \{\tilde{z}_i, i = 1, \dots, n-1: -\infty \leq \tilde{z}_i \leq \infty, i = 1, \dots, n-2, \tilde{z}_{n-1} \in [a_1, a_2]\}.$$
(28)

Согласно рис. 1, $[a_1, a_2] = [0, \infty]$ или $[-\infty, 0]$. Нетрудно убедиться в том, что для всех вариантов допустимой области величина $m_{ij}^{(2)}$ не зависит от указанных двух возможных пределов интегрирования по \tilde{z}_{n-1} , поэтому, положив в (28) $a_1 = 0$, $a_2 = \infty$, получим

$$m_{ij}^{(2)} = 0, \ i, \ j = 1,...,n, \ i \neq j, \ m_{ii}^2 = \sigma^2 / 4, \ i = 1,...,n-1, \ m_{nn}^2 = 0.$$
 (29)

Вычисление $m_{ij}^{(3)}$. Рассуждая аналогично тому, как это делалось для определения $\varphi_k(\tilde{Z}), k = 1, 2$, придем к выводу, что $\varphi_3(\tilde{Z})$ представляет собой двойной интеграл по области $\omega_5 \subset R^2$, находящейся внутри угла φ (см. рис. 1). Она заключена между нормалью к прямой Π_1 в начале координат (на рис. 1 – пунктир) и осью ординат. Имеем

$$\varphi = \pi - \Phi. \tag{30}$$

Таким образом,
$$\varphi_3(\tilde{Z}) = \int_{\omega_5} f(Z) dz_{n-1} dz_n$$
, где $f(Z)$ определяется (16). Очевидно,

 $z_i = \tilde{z}_i, i = 1,..., n-2$. Для остальных переменных перейдем к полярным координатам, $z_n-1 = t \cos \alpha, z_n = t \sin \alpha, rge \ 0 \le t \le \infty, 0 \le \alpha \le \varphi$. Имеем

$$\varphi_3(Z) = (\varphi / 2\pi c_{n-2}) \exp(-Z'Z / 2\sigma^2).$$
(31)

Очевидно

$$dw_3 = d\,\tilde{z}_1 \dots d\,\tilde{z}_{n-2}.$$
(32)

Подставив это выражение и (31) в (17), получим, так как $\tilde{z}_{n-1} = \tilde{z}_n = 0$

$$m_{ij}^{(3)} = \frac{\phi}{2\pi c_{n-2}} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \tilde{z}_i \tilde{z}_j \exp\left(-\frac{Z'Z}{2\sigma^2}\right) d\tilde{z}_1 \dots d\tilde{z}_{n-2}, \ i, \ j = 1, \dots, n-2$$

Отсюда

$$m_{i,j}^{(3)} = 0$$
, $i, j = 1,...,n, i \neq j, m_{ii}^{(3)} = 0$, $i = n - 1, .n, m_{ii}^3 = (\varphi / 2\pi)\sigma^2$, $i = 1,...,n - 2$. (33)

Вычисление $m_{ij}^{(4)}$. В данном случае $dF(Z) = f(Z) dz_1...dz_n$. Отсюда, (16) и (13) следует, согласно рис. 1, для i, j = 1,...n

$$m_{ij}^{(4)} = c_n^{-1} \int_{\tilde{\omega}_4} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} z_i z_j \exp\left(-\frac{Z'Z}{2\sigma^2}\right) dz_1 \dots dz_{n-2} dz_{n-1} dz_n,$$

где $\tilde{\omega}_4 \subset \omega_4$, $\tilde{\omega}_4 = \{z_{n-1}, z_n: b_{1, n-1}z_{n-1} + b_{1n}z_n \leq 0, b_{2n}z_n \leq 0\}$. В полярных координатах $z_{n-1} = t \cos \alpha$, $z_n = t \sin \alpha$. Тогда нетрудно показать, что

$$m_{ij}^{(4)} = 0, \ i, \ j = 1, \dots, n-2, \ i \neq j,$$

$$m_{ij}^{(4)} = \frac{1}{2\pi\sigma^2} \int_{\alpha_1}^{\alpha_2} \int_{0}^{\infty} t^3 \sin^3 \alpha \cos^b \alpha \exp\left(-\frac{t^2}{2\sigma^2}\right) dt d\alpha \quad i, \ j = n - 1, \ n,$$
(34)

где α_1 и α_2 определяются по табл. 1: a + b = 2; a = 1, $i \neq j$, a = 0, i = j = n-1, a = 2, i = j = n. Из (34) следует $m_{ij}^{(4)} = 0$, i, j = 1, ..., n, $i \neq j$, кроме

$$m_{n-1, n} = \frac{\sigma^2}{2\pi} \sin^2 \Phi \operatorname{sign}(b_{2n}b_{1, n-1}), \ m_{ii}^{(4)} = \sigma^2 \Phi / 2\pi, \ i, \ j = 1, \dots, n-2,$$
(35)

$$m_{n-1, n-1}^{(4)} = \left(\Phi + \frac{1}{2}\sin 2\Phi\right)\frac{\sigma^2}{2\pi}, \ m_{nn}^{(4)} = \left(\Phi - \frac{1}{2}\sin 2\Phi\right)\frac{\sigma^2}{2\pi}.$$

Окончательно получаем из (13), (25), (29), (33) и (35) с учетом (20)

$$m_{ii} = \sigma^2, \ i = 1, \dots, n-2, \ m_{n-1, n-1} = (1 + \cos^2 \Phi) \frac{\sigma^2}{2\pi} + \left(\Phi + \frac{1}{2}\sin 2\Phi\right) \frac{\sigma^2}{2\pi},$$
 (36)

$$m_{nn} = \sin^2 \Phi \frac{\sigma^2}{4} + \left(\Phi - \frac{1}{2}\sin 2\Phi\right) \frac{\sigma^2}{2\pi}, \ m_{i,j} = 0, \ i, \ j = 1,...,n, \ i \neq j,$$

153

кроме

$$n_{n-1, n} = \frac{b_{1, n-1}b_{1n}\sigma^2}{4||b_1||^2} + \frac{\sigma^2}{2\pi}\sin^2\Phi\operatorname{sign}(b_{2n}b_{1, n-1}).$$

Выражение (36) полностью задает матрицу K_V в (12), так как она симметричная. В нем угол Φ определяется из условия нахождения его внутри допустимой области и соотношения

$$|\cos \Phi| = |b_{1n}| / ||b_1||^2 \tag{37}$$

(см. табл. 1). Нетрудно убедиться в том, что $0 \le \Phi \le \pi$.

Рассмотрим обобщенную дисперсию оценки параметров, которая равна определителю K. Из (12) detK = detR⁻¹detK_V ≥ 0 . Определим коэффициенты в ограничениях (6), для которых detK минимален. От этих коэффициентов зависит только detK_V ≥ 0 . Согласно (36), detK_V = 0, если $\Phi = 0$, т.е. $b_{1,n-1} = 0$. Этому случаю соответствуют варианты 1, 2, 7 и 8 допустимой области, для которых коэффициенты b_{1n} и b_{2n} имеют разные знаки (см. табл. 1). Следовательно, из (10) и (11) имеем $0 \le z_n \le 0$, т.е. два ограничения-неравенства переходят в одно равенство $z_n = 0$. Таким образом, минимум обобщенной дисперсии оценки параметров достигается, когда в (6) g'x = 0, где $g = g_1 = g_2$.

3. Вычисление матрицы *K* для m = 1. Величина *U* в данном случае – решение (6) при i = 1. Положив $X_1 = D_1 Z$, где $X_1 = \Lambda^{\frac{1}{2}} c^{-1} X$, D_1 – ортогональная матрица, запишем ограничение в виде $b'_1 z = g'_1 c \Lambda^{-\frac{1}{2}} D_1 Z \leq 0$, $b_1 \in \mathbb{R}^n$. Выберем D_1 так, чтобы $b_1 = (0, ..., 0, b_{1n})'$. Тогда от исходной перейдем к задаче

$$\frac{1}{2}Z'Z - P'Z \to \min, \ b_1'Z = b_{1n}Z_n \le 0,$$
(38)

где $P = D'_1 \Lambda^{-\frac{1}{2}} c'Q$, $P \sim (0, \sigma^2 J_n)$. Из преобразований следует $U = C \Lambda^{-\frac{1}{2}} D_1 V$, где V -решение (38) для всех реализаций P.

Отсюда

$$K = C\Lambda^{-\frac{1}{2}} D_1 K_V D_1' \Lambda^{-\frac{1}{2}} C'.$$
(39)

Из сравнения (38) с (9), (10) следует, что элементы K_V определяются (36), (37) при $b_{1,n-1} = 0$. Тогда $|\cos \Phi| = 1$, г.е. $\Phi = \pi$. Подставив $b_{1,n-1} = 0$, $\Phi = \pi$ в (36), получим

$$m_{ii} = \sigma^2, \ i = 1, \dots, n-1, \ m_{nn} = \sigma^2 / 2, \ m_{ij} = 0, \ i, j = 1, \dots, n, \ i \neq j.$$
 (40)

3. ВЫЧИСЛЕНИЕ ВЕКТОРА ST

1. Состоятельность оценки смещения α_T . Будем здесь следовать схеме доказательства состоятельности оценки матрицы СКО оценок параметров, изложенной в [7]. Обозначим число сочетаний активных и неактивных ограничений *L*. Каждое сочетание *l* определяется множеством номеров активных ограничений *J_i*, не зависящим от интервала наблюдения *T*. Обозначим l_0 номер сочетания ограничений, которому соответствует $\alpha = \alpha^0$. Тогда $J_{l_0} = I_1^0$, где I_1^0 определено в (3), (4). Пусть случайная величина U_l определяется для каждой реализации $Q \sim N(0, \sigma^2 R(\alpha^0))$ как решение задачи

$$\frac{1}{2}X'RX - Q'X \to \min, \ g_i'X \le 0, \ i \in J_l,$$
(41)

где R – положительно определенная матрица. Положим, $S_l = MU_l = M\Psi_l(N, R, \sigma) =$

= $F_l(R, \sigma)$, где $N = \sigma^{-1}Q$. Оценим S_l вектором $F_l(R_T, \alpha_T)$, где α_T – оценка параметров в регрессии (1) при ограничениях (2), σ_T – оценка σ . В качестве оценки смещения $\alpha_T S_T^0 = \sqrt{T} M(\sigma_T - \alpha^0)$ рассмотрим выражение

$$S_T = \sum_{l=1}^{L} F_l(R_T, \sigma_T) \gamma_{lT}.$$
(42)

Если для числа наблюдений T в результате решения задачи оценивания параметров регрессии получается *l*-е сочетание активных и неактивных ограничений, то $\gamma_{lT} = 1$, в противном случае $\gamma_{lT} = 0$. Имеем для *i*-й компоненты S_l

$$S_{li} = F_{li}(R, \ \sigma) = \int_{R^n} h_{li}(x, \ R, \ \sigma) f(x, \ R) dx,$$
(43)

где $h_{li} - i$ -я компонента решения (41), $R = R(\alpha^0), f(x, R) - плотность$ распределения $N: f(x, R) = (2\pi)^{-\frac{1}{2}n} (\det R)^{-\frac{1}{2}} \cdot \exp\left(-\frac{1}{2}x'R^{-1}x\right).$

При отсутствии ограничений в (41) $S_l = MU_l = MR^{-1}Q = 0$. Введение ограничений не влияет на конечность смещения S_l , поэтому

$$|F_{li}(R, \sigma)| < \infty \quad \forall R, \forall \sigma.$$
⁽⁴⁴⁾

Лемма. Функция S_{li}, определенная в (43), непрерывна по R и о.

Доказательство использует условие (44) и аналогично доказательству леммы 3 в [7] при замене в формуле (92) [7] H_{ij} на S_{li} , $s_i(x, R, \sigma)$ на $h_{li}(x, R, \sigma)$ и $s_j(x, R, \sigma) \equiv 1$.

Обозначим $U(\omega)$, $\omega \in N$, где N – выборочное пространство; решение задачи: $\frac{1}{2}X'RX - Q'(\omega)X \rightarrow \min, g'_iX \leq 0, i \in I_1^0$, где $Q(\omega) = Q$ определено в (41).

Теорема. Если распределения случайных величин $\sqrt{T}(\alpha_T - \alpha^0)$ при $T \to \infty$ сходятся к распределению случайной величины $U = U(\omega)$, то plim $S_T = MU$.

Условия сходимости распределений приведены в теореме 2 [7]. В частности, α_T должно быть состоятельной оценкой.

Цоказательство. Согласно [7]

$$\operatorname{plim} \sigma_T^2 = \sigma^2. \tag{45}$$

Кроме того, в соответствии со следствием из леммы 4 [7] в силу состоятельности α_T plim $R_T = R$. (46)

Из леммы (45) и (46) следует $\operatorname{plim} F_l(R_T \sigma_T) = F_l(R, \sigma)$. Тогда из (42), так как, согласно теореме 5 [7], $\operatorname{plim} \gamma_{l_0T} = 1$, $\operatorname{plim} \gamma_{l_T} = 0$, $l \neq l_0$, имеем $\operatorname{plim} S_T = F_{l_0}(R, \sigma^2)$. Но $U_{l_0} = U$, поэтому $MU = MU_{l_0} = F_{l_0}(R, \sigma^2)$. Отсюда следует утверждение теоремы.

Согласно теореме, выборочная оценка смещения $\alpha_T S_T = S_T(\alpha_T^*) = M U_T$, где $U_T -$ решение (5).

2. Вычисление выборочной оценки смещения α_T . Рассмотрим сначала случаи, когда имеются два ограничения (m = 2). В дальнейшем опустим индексы у U_T и S_T для упрощения обозначений. Используя полученное в п. 1, разд. 2 соотношение, связывающее $U \, c \, V$, где V – решение (9)–(11), имеем

$$S = C \Lambda^{-1/2} D_1 D_2 S_V, \tag{47}$$

где S_V = MV. Для *i*-й компоненты S имеем аналогично (13)

155

$$s_i = \int_{\mathbb{R}^n} z_i dF(Z) = \sum_{k=1}^4 \int_{\omega_k} z_i dF(Z) = \sum_{k=1}^4 s_i^{(k)}, \ i, \ j = 1, \dots, n.$$
(48)

Отсюда и (14) получаем для
$$k < 4$$

 $s_i^{(k)} = \int_{\omega_k} \tilde{z}_i \varphi_i(\tilde{Z}) d\omega_k, \quad i, \quad j = 1, ..., n, \quad \tilde{Z} \in \omega_k.$
(49)

Проделав выкладки, аналогичные выводу (24), получим согласно (49), учитывая уравнение ω₁ в параметрической форме (22)

$$s_i^{(1)} = \lambda_i \mu_1 \int_{0-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} L(\tilde{z}_i) \varphi_{\beta}(\tilde{\beta}) d\beta_1 \dots d\beta_{n-2} d\beta_{n-1}, \quad i = 1, \dots, n,$$
(50)

где $L(z_i) = \beta_i$, i = 1,...,n-2, $L(\tilde{z}_i) = \beta_{n-1}$, i = n, n-1; $\varphi_{\beta}(\tilde{\beta})$ определяется согласно (23); $\lambda_i = 1$, i = 1,...,n-2, $\lambda_{n-1} = d_{11}^{(3)}$, $\lambda_n = d_{21}^{(3)}$; μ_1 приведено в табл. 1.

Коэффициент μ_1 и пределы интегрирования по β_{n-1} получены так. Согласно (20) и (22), sign β_{n-1} = sign z_{n-1} . Для точек допустимой области, принадлежащих ω_1 (варианты 2, 4, 5 и 7), $z_{n-1} \ge 0$, т.е. $\mu_1 = 1$. В остальных случаях $z_{n-1} \le 0$ (при этом $\mu_1 = -1$). Таким образом, $\beta_{n-1} \in [0, \infty]$ при $\mu_1 = 1$ и $\beta_{n-1} \in [-\infty, 0]$ при $\mu_1 = -1$. Отсюда следуют пределы интегрирования по β_{n-1} и задание μ_1 в (50). Из (50) вытекает

$$s_i^{(1)} = 0, \ i = 1, \dots, n-2, \ s_i^{(1)} = \lambda_i \mu_1 \sigma / 2\sqrt{2\pi}, \ i = n-1, \ n.$$
(51)

При определении $S_i^{(2)}$ используем (26), (27) и уравнение гиперплоскости $\omega_2 \tilde{z}_n = 0$. Из этих соотношений и (49) следует $s_n^{(2)} = 0$ и для i = 1, ..., n-1

$$s_i^{(2)} = \frac{1}{2c_{n-1}} \int_{\omega_2} \tilde{z}_i \exp\left(-\frac{\tilde{z}'\tilde{z}}{2\sigma^2}\right) d\tilde{z}_1 \dots d\tilde{z}_{n-1},$$
(52)

где ω_2 задается (28). Из этого выражения и (52) получаем для i = 1, ..., n-1

$$s_i^{(2)} = \frac{\mu_2}{2c_{n-1}} \int_{0-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \tilde{z}_i \exp\left(-\frac{\tilde{Z}'\tilde{Z}}{2\sigma^2}\right) d\tilde{z}_1 \dots d\tilde{z}_{n-2} d\tilde{z}_{n-1}, \text{ где } \mu_2 \text{ приведено в табл. 1.}$$

Вычислив интеграл, имеем

$$s_i^{(2)} = 0, \ i = 1, ..., n-2, \ s_{n-1}^{(2)} = \frac{\mu_2 \sigma}{2\sqrt{2\pi}}, \ s_n^{(2)} = 0.$$
 (53)

Уравнение гиперплоскости $\omega_3 z_{n-1} = z_n = 0$. Отсюда и из (49), (31) и (32) следует $s_i^{(3)} = 0, i = n, n-1$ и для i = 1,...,n-2

$$s_i^{(3)} \frac{\varphi}{2\pi c_{n-2}} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \tilde{z}_i \exp\left(-\frac{\tilde{Z}'\tilde{Z}}{2\sigma^2}\right) d\tilde{z}_1 \dots d\tilde{z}_{n-2},$$

где $\tilde{Z} = (\tilde{z}_1 ... \tilde{z}_{n-2})$. Таким образом,

$$s_i^{(3)} = 0, \ i = 1, \dots, n.$$
 (54)

Аналогично выражению для $m_{ij}^{(4)}$ для i = 1, n

$$s_i^{(4)} = c_n^{-1} \iint_{\omega_4} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} z_i \exp\left(-\frac{Z'Z}{2\sigma^2}\right) dz_1 \dots dz_{n-2} dz_{n-1} dz_n.$$

В полярных координатах $z_{n-1} = t \cos \alpha$, $z_n = t \sin \alpha$, $0 \le t \le \infty$, $\alpha_1 \le \alpha \le \alpha_2$, где α_1 , α_2 приведены в табл. 1.

Тогда можно показать, что $s_i^{(4)} = 0$, i = 1, ..., n-2, и для i = n-1, n

$$S_i^{(4)} = \frac{1}{2\pi\sigma^2} \int_{\alpha_1}^{\alpha_2} \int_{0}^{\infty} t^2 \cos^a \alpha \sin^b \alpha \exp\left(-\frac{t^2}{2\pi\sigma^2}\right) dt d\alpha,$$

где a + b = 1, a = 1 при i = n-1, a = 0 при i = n. Вычислив интеграл, получим

$$s_i^{(4)} = 0, \ i = 1, ..., n-2, \ s_{n-1}^{(4)} = -\frac{\sigma \sin \Phi \operatorname{sign} b_{1, n-1}}{2\sqrt{2\pi}},$$
 (55)

 $s_n^{(4)} = -\frac{\sigma(1-\cos)\Phi \operatorname{sign} b_{2n}}{2\sqrt{2\pi}}.$

Из (49), (51), (53)–(55) следует с учетом (20)

$$s_{i} = 0, \quad i = 1, ..., n - 2, \quad s_{n-1} \frac{\sigma}{2\sqrt{2\pi}} \left(\frac{|b_{1n}|}{||b_{1}||} \mu_{1} + \mu_{2} - \sin \Phi \operatorname{sign}(b_{1, n-1}) \right),$$

$$s_{n} = -\frac{\sigma}{2\sqrt{2\pi}} \left((1 - \cos \Phi) \operatorname{sign}(b_{2n}) + \frac{b_{1, n-1} \operatorname{sign}(b_{1, n})}{||b_{1}||} \right).$$
(56)

Если имеется одно ограничение, то, согласно п. 3, разд. 2, $b_{1, n-1} = 0, \Phi = \pi$. Нетрудно определить, анализируя рис. 1 и табл. 1, что для $m = 1 \mu_1 + \mu_2 = 0$. Подставив эти выражения в (56), получим

$$s_i = 0, \ i = 1, \dots, n-1, \ s_n = -\frac{\sigma \operatorname{sign} b_{2n}}{\sqrt{2\pi}}.$$
 (57)

4. ПРИМЕР ОПРЕДЕЛЕНИЯ ОЦЕНОК СКО И СМЕЩЕНИЯ ОЦЕНОК ПАРАМЕТРОВ

Рассмотрим вычисление К и вектора S по решению (6) в соответствии с алгоритмами разд. 2,3 применительно к регрессии

$$y_{t1} = \sum_{i=1}^{2} \alpha_{i}^{0} x_{ti} + \varepsilon_{t1}, \quad y_{t2} = \sum_{i=1}^{2} \alpha_{i+2}^{0} x_{ti} + \varepsilon_{t2}, \quad t = 1, \dots, T,$$
(58)

и ограничениями на параметры

$$g_1(\alpha) = \sum_{i=1}^4 \alpha_i + B_1 \le 0, \ g_2(\alpha) = \alpha_1 + \alpha_4 + B_2 \le 0.$$
(59)

В (58) $x_{t1} = 1$, $x_{t2} = \cos t$, $M(\varepsilon_{ij}) = \sigma^2$, j = 1, 2, $M\{\varepsilon_{t1}\varepsilon_{\tau2}\} = 0$, $t \neq \tau$. Многомерная регрессия с помощью преобразования сводится к одномерной, поэтому все выражения, приведенные в разд. 2,3, остаются верны для (58) при соблюдении указанных условий для ε_{t1} и ε_{t2} .

В данном случае в (6) $R = J_2 \otimes r$, где $r = \{r_{ij}\}, i, j = 1, 2, r_{ij} = T^{-1} \sum_{t=1}^{T} x_{ti} x_{tj}$. Согласно

(59) $g'_1 = (1, 1, 1, 1, 1), g'_2 = (1, 0, 0, 1).$

Приведем алгоритм вычисления К и S, иллюстрируя выкладки для рассмотренной задачи.

1. Вычисление матриц С и Λ = diag(λ_i), i = 1,...,4, λ_1 = λ_3 , λ_2 = λ_4 . Для нахождения

собственных значений R достаточно найти их для r, решив характеристическое уравнение: det $(R-\lambda J_2) = 0$, т.е. $\lambda^2 - (r_{11} + r_{22})\lambda + r_{11}r_{22} - r_{12}^2 = 0$. Очевидно $C = J_2 \otimes c$, где матрица c такова, что $c'rc = \text{diag}(\lambda_1, \lambda_2)$. Она определяется методами, описанными, например, в [8].

2. Вычисление матрицы D₁. Рассмотрим второе ограничение в (7). Соответствующая ему гиперплоскость имеет уравнение

$$\sum_{i=1}^{4} a_{2i} x_i^{(1)} = 0, \tag{60}$$

где $x_i^{(1)}$ и a_{2i} – компоненты X_1 и

$$a_2 = \Lambda^{-\frac{1}{2}} C' g_2. \tag{61}$$

Определим ортогональную систему векторов, принадлежащих гиперплоскости (60). Нетрудно убедиться в том, что следующая система векторов линейно независима и принадлежит (60)

$$\eta'_{1} = (0, 0, 1, -a_{23} / a_{24}), \ \eta'_{2} = (-a_{22} / a_{21}, 1, 0, 0),$$

$$\eta'_{2} = (-a_{24} / a_{24}, 0, 0, 1), \ \eta'_{4} = (a_{21}, a_{22} a_{23} a_{24}).$$
(62)

Вектор η_1 получен подстановкой $X_1^{(1)} = X_2^{(1)} = 0$, $X_3^{(1)} = 1$ в (60). Аналогично найдены остальные векторы. Ортогональная система векторов строится из (62) методом Грама-Шмидта

$$\begin{aligned} \theta_{1} &= \eta_{1}, \ \theta_{j} = \eta_{j} - \sum_{i=1}^{j-1} \frac{\theta_{i}^{i} \eta_{j}}{||\theta_{i}||^{2}} \theta_{i}, \ j = 2, \dots, 4. \end{aligned}$$
(63)

$$\begin{aligned} \Pi_{\text{A}\text{R}\text{e}\text{e}, \ D_{1} &= \left\{ \frac{\theta_{j}}{||\theta_{j}||} \right\} = \left\{ d_{ij}^{(1)} \right\}, \ i, \ j, = 1, \dots, 4, \ \text{rge} \\ d_{11}^{(1)} &= d_{21}^{(1)} = 0, \ d_{31}^{(1)} = 1/||\theta_{1}||, \ d_{41} = -a_{23} / a_{24} ||\theta_{1}||, \\ d_{21}^{(1)} &= -a_{22} / a_{21} ||\theta_{2}||, \ d_{22}^{(1)} = 1/||\theta_{2}||, \ d_{23}^{(1)} = d_{24}^{(1)} = 0, \\ d_{13}^{(1)} &= -\frac{a_{24}a_{21}}{(a_{21}^{2} + a_{22}^{2})||\theta_{3}||, \ d_{23}^{(1)} = -\frac{a_{24}a_{22}}{(a_{21}^{2} + a_{22}^{2})||\theta_{3}||, \\ d_{33}^{(1)} &= \frac{a_{23}a_{24}}{(a_{23}^{2} + a_{24}^{2})||\theta_{3}||, \ d_{34}^{(1)} = \frac{a_{24}^{2}}{(a_{23}^{2} + a_{24}^{2})||\theta_{3}||, \\ d_{i4}^{(1)} &= a_{2i} / ||\theta_{4}||, \ i = 1, \dots, 4, \ \text{rge} \ ||\theta||^{2} = 1 + a_{23}^{2} / a_{24}^{2}, \\ ||\theta_{2}||^{2} = 1 + a_{22}^{2} / a_{21}^{2}, \ ||\theta_{3}||^{2} = a_{24}^{2}[(a_{21}^{2} + a_{22}^{2})^{-1} + [(a_{23}^{2} + a_{24}^{2})^{-1}], \ ||\theta_{4}|| = \sum_{i=1}^{4} a_{2i}^{2}. \end{aligned}$$

3. Вычисление матрицы D₂. Обратимся к (8). Для нашего случая это уравнение имеет вид

$$\sum_{i=1}^{3} e_{1i} x_i^{(2)} = 0, \tag{64}$$

где e_{1i} - компонента

$$e_1 = D_1' \Lambda^{-\frac{1}{2}} C' g_1.$$

Дальнейшие выкладки аналогичны вычислению D_1 и проводятся применительно к (64). Линейно независимая система векторов, принадлежащих (64)

$$\eta'_1 = (-e_{13} / e_{11}, 0, 1), \ \eta'_2 = (1, -e_{11} / e_{12}, 0), \ \eta'_3 = (e_{11}, e_{12}, e_{13}).$$
 (65)

Ортогональная матрица $\tilde{D}_2 = \{\theta_j / ||\theta_j||\} = \{d_{ij}^{(2)}\}, i, j = 1,...,3,$ где векторы θ_j определяются по (63) при подстановке в них η_j из (65). Учитывая блочную структуру D_2 (см. п. 1 разд. 2), получим выражения для ее элементов

$$d_{11}^{(2)} = -\frac{e_{13}}{e_{11}||\theta_1||}, \quad d_{21}^{(2)} = 0, \quad d_{31}^{(2)} = 1, \quad d_{12}^{(2)} = \frac{e_{11}}{(e_{11}^2 + e_{13}^2)||\theta_2||},$$

$$d_{22}^{(2)} = \frac{e_{11}}{e_{12}||\theta_2||}, \quad d_{32}^{(2)} = \frac{e_{13}e_{11}}{(e_{11}^2 + e_{13}^2)||\theta_2||}, \quad d_{i3}^{(2)} = \frac{e_{1i}}{||\theta_3||}.$$

$$i = 1, \dots, 3, \quad d_{4i}^{(2)} = d_{i4}^{(2)} = 0, \quad i = 1, \dots, 3, \quad d_{44}^{(2)} = 1,$$

где $||\theta_1||^2 = 1 + e_{13}^2 / e_{11}^2$,

$$||\theta_2||^2 = e_{11}^4 / (e_{11}^2 + e_{13}^2)^2 + e_{11}^2 / e_{12}^2 + e_{13}^2 e_{11}^2 / (e_{11}^2 + e_{13}^2)^2, ||\theta_3||^2 = \sum_{i=1}^3 e_{1i}^2.$$

4. Вычисление коэффициентов в (10), (11).

Для этого

$$b_i = D'_2 D'_1 \Lambda^{-\gamma_2} C' g_i, \ i = 1, 2.$$

5. Вычисление элементов K_V по (36) и К по (12).

6. Вычисление компонент S_V по (56) и S по (47).

Приведем вычисления по шагам 1-6 алгоритма для *T* = 40. Все величины даются с точностью до пятого знака после запятой.

1. $r_{11} = 1$, $r_{21} = r_{12} = -0,00379$, $r_{22} = 0,48907$, $\lambda_1 = \lambda_3 = 1$, $\lambda_2 = \lambda_4 = 0,48904$, $c_{11} = c_{22} = 1,0003$, $c_{21} = c_{12} = -0,00742$.

2. $a'_2 = (0,999999; -0,01022; -0,00742; -1,41419)$

$$D_{1} = \begin{vmatrix} 0 & 0,01048 & 0,81644 & 0,57735 \\ 0 & 1 & -0,00856 & -0,00605 \\ 1 & 0 & 0,00524 & -0,00428 \\ -0,00524 & 0 & 0,57735 & -0,81650 \end{vmatrix}$$

3. $l_{1} = \begin{vmatrix} 1,00000 \\ -1,41428 \\ 0,00523 \\ 1,74068 \end{vmatrix}$, $D_{2} = \begin{vmatrix} -0,00523 & 0,666666 & 0,57734 & 0 \\ 0 & 0,57734 & -0,81650 & 0 \\ 1 & 0,00427 & 0,00302 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$
4. $b_{1}' = (0; 0; 1,73182; 1,73994), b_{2}' = (0; 0; 0; 1,73211),$
5. $\Phi = 0,749\pi, K_{V} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0,67040 & -0,04542 \\ 0 & 0 & -0,04542 & 0,579570 \end{vmatrix}$
 σ^{2} .

$$K = \begin{vmatrix} 0,85881 & -0,02484 & -0,01473 & -0,02804 \\ 1,56569 & -0,21750 & -0,06172 \\ 0,86936 & -0,02627 \\ 1,43935 \end{vmatrix}$$

Τ	a	б.	n	u	Ц	a	2
					,		

Величины $K_{ii}^0 \sigma^{-2}$ и $s_i^0 \sigma^{-1}$		Ограниче- ния отсутст- вуют					
	два неравенства	два равенства	одно неравенство	одно равенство			
$k_{11}^0 \sigma^{-2}$	0,85881	0,6715	0,83339	0,6715	1,00003		
$k_{22}^0 \sigma^{-2}$	1,56569	0,6715	1,99995 -	2,04470	2,04470		
$k_{33}^0 \sigma^{-2}$	0,86996	0,6715	0,99998	1,00003	1,00003		
$k_{44}^0 \sigma^{-2}$	1,43935	0,6715	1,33353	0,6715	2,04470		
$s_1^0 \sigma^{-1}$	-0,27855	0	-0,23033	0	0		
$s_{2}^{0}\sigma^{-1}$	-0,23240	0	0,001706	0	0		
$s_{3}^{0}\sigma^{-1}$	-0,11715	0	-0,001707	0	0		
$s_{4}^{0}\sigma^{-1}$	-0,55557	0	-0,46065	0	- 0		
$\sigma^{-8} \det K^0$	1,70107	0,20335	2,25939	0,92298	4,17080		

6. S'_V = (0; 0; −0,19947; −0,48156) σ, вектор S приведен в первом графе табл. 2.

Пусть в (59) B_1 и B_2 таковы, что для $\alpha_i = \alpha_i^0$, i = 1, ..., 4, эти ограничения активны. Рассмотрим два случая: на параметры регрессии наложены оба ограничения (59) и только одно (второе в (59)). Для обоих случаев K и S, вычисленные по описанному алгоритму, будут точными значениями матрицы СКО оценок параметров регрессии и их смещения: $K = K^0$, $S = S^0$.

В табл. 2 приведены диагональные элементы K^0 и компоненты S^0 для различного числа и видов ограничений. Как видно из табл. 2. случай с ограниченияминеравенствами в нашем примере – промежуточный между ограничениями-равенствами и отсутствием любых ограничений. Добавление первого ограничения-неравенства ко второму незначительно увеличило k_{11}^0 , k_{44}^0 и понизило k_{33}^0 . Заметно уменьшился k_{22}^0 . Величина det K^0 сократилась на 24,5%. В целом добавление первого ограничениянеравенства оказало небольшое влияние на дисперсии оценок параметров и их смещение из-за того, что угол Φ между двумя ограничивающими гиперплоскостями (в преобразованном виде) тупой (см. вариант 5 на рис. 1), который соответствует расссмотренному примеру.

5. МАШИННЫЙ ЭКСПЕРИМЕНТ

Определим точность оценивания матрицы СКО оценок параметров регрессии и их смещения по алгоритмам разд. 3 на примере разд. 4. С этой целью объект, описываемый (58), имитировался для $\varepsilon_{ij} \sim N(0, \sigma^2)$, $j = 1, 2, \sigma^2 = 0,09$ с истинными значениями параметров $\alpha_1^0 = \alpha_3^0 = 1$, $\alpha_2^0 = 2$, $\alpha_4^0 = 0,5$. Получено для каждой реализации ε_{t1} , ε_{t2} , t = 1,...,T, временные ряды V_{tN} , где N – номер реализации. Для временного ряда y_{tN} , t = 1,...,T, оценивались МНК параметры модели с учетом ограничений (59) и по ним определялись оценки элементов K^0 и компонент S^0 , которые усреднялись по NR-реализациям

$$\begin{split} \tilde{k}_{ij} &= T \sum_{N=1}^{NR} (\alpha_{iN} - \alpha_i^0) (\alpha_{jN} - \alpha_{jN}^0) / NR, \\ \tilde{s}_i &= \sqrt{T} \sum_{N=1}^{NR} (\alpha_{iN} - \alpha_i^0) / NR, \ i, \ j = 1, \dots, 4, \end{split}$$

(66)

Величины k _{ii} и s _i	Расчетны оценок С ния парам	е значения КО и смеще- теров	Оценки СКО и смещения параметров по резуль- татам моделирования на ЭВМ				
	два	одно	$B_1 = -4,5,$	$B_1 = -4,6$	$B_1 = -4, 8,$	$B_1 = -5,$	
(MONOS	ограни- чения	ограничение	$B_2 = -1,5$	$B_2 = -1,5$	$B_2 = -1,5$	$B_2 = -1,5$	
Collector Sand	0.07700	0.07500	0.0770.6	0.07500	0.0000	0.000	
<i>k</i> ₁₁	0,07723	0,07500	0,07736	0,07598	0,07761	0,7608	
k22	0,14091	0,18000	0,13814	0,16293	0,17576	0,17579	
k33	0,07829	0,09000	0,08834	0,09522	0,09902	0,09903	
k44	0,12954	0,12002	0,12761	0,11944	0,11745	0,11745	
<i>s</i> ₁	-0,08356	-0,06910	-0,08012	-0,07022	-0,0684	-0,06841	
\$2	-0,06972	-0,00051	-0,07629	-0,02807	-0,01799	-0,01787	
<i>S</i> 3	-0,03514	-0,00052	-0,03022	-0,01459	-0,00965	-0,00964	
s4	-0,16667	-0,13820	-0,16433	-0,01443	-0,14062	-0,14062	

где α_{iN} – оценка α_i^0 , определенная по ряду e_{iN} , t = 1,...,T. Вычисления проводились для короткого временного ряда (T = 40), что типично для моделирования многих экономических процессов.

Результаты расчетов при NR = 1000 для разных значений B_1 и B_2 в (59) приведены в табл. 3. В ней во 2-й и 3-й графах представлены значения K и S – оценок матрицы СКО и смещения оценок параметров регрессии, вычисленные по формулам разд. 4 для $\sigma^2 = 0,09$ соответственно для случаев, когда в выборке активны оба ограничения в (59), активное ограничение одно – второе. В последующих графах таблицы приведены оценки K^0 и S^0 , вычисленные по (66).

Очевидно, величины по 2-й графе – точные значения K^0 и S^0 , если имеются два активных ограничения в точке $\alpha = \alpha^0$. Действительно, эти величины достаточно близки к соответствующим значениям в 4-й графе.

Графы 5–7 соответствуют одному (второму) активному ограничению в точке $\alpha = \alpha^0$. Наиболее вероятно, что в выборке для этого случая будет активным второе ограничение, чему соответствуют расчетные оценки K^0 и S^0 в 3-й графе. Как видно, они достаточно близки к оценкам K^0 и S^0 в графах 5–7.

Табл. 4 дает представление о влиянии реализаций NR на оценки K^0 и S^0 , вычисляемые путем решения методом Монте-Карло. В ней приведены результаты расчетов для случая, когда имеется одно – второе ограничение-неравенство в (59). Для сравнения приводятся оценки K^0 и S^0 , вычисленные методом Монте-Карло при отсутствии ограничений. Из табл. 4 видно, что хорошая точность расчетов достигается при NR = 1000.

6. АНАЛИЗ РЕЗУЛЬТАТОВ [5]

В [5] рассмотрена модель $y_t = \sum_{i=1}^{2} x_{ti} \alpha_i^0 + \varepsilon_t$ с ограничениями $\alpha_i \ge 0, i = 1, 2,$ где $\varepsilon_t \sim N(0, \sigma^2)$. Для СКО-оценок параметров $\sigma^2(\alpha_{Ti})$, и их смещения $b(\alpha_{Ti}), i = 1, 2,$ где α_{Ti} – оценка α_i^0 МНК, с учетом ограничений получены зависимости вида

$$\sigma^{2}(\alpha_{Ti}) = M(\alpha_{Ti} - \alpha^{0})^{2} = \sigma^{2}(\hat{\alpha}_{Ti})p_{i}(\alpha_{1}^{0} / \sigma(\hat{\alpha}_{Ti}), \ \alpha_{0}^{2} / \sigma(\hat{\alpha}_{T2}), \ r_{T}),$$
(67)

 $b(\alpha_{Ti}) = M(\alpha_T - \alpha^0) = \sigma(\hat{\alpha}_{Ti})l_i(\alpha_1^0 / \sigma(\hat{\alpha}_{T1}), \alpha_0^2 / \sigma(\hat{\alpha}_{T2}), r_T),$ где $\sigma^2(\hat{\alpha}_{Ti}) - ди$ $сперсия <math>\hat{\alpha}_{Ti}$ – оценки α_i^0 при отсутствии ограничений, r_T – коэффициент корреляции между $\hat{\alpha}_{T1}$ и $\hat{\alpha}_{T2}$; p_i и l_i – некоторые непрерывные нелинейные функции.

Таблица 4

(68)

Величины k_{ii}^0 и s_i	C	дно ограничен	Ограничения отсутствуют			
	точные значения	вычислено м те-Карло	иетодом Мон-	точные значения	вычислено методом Монте- Карло, <i>NR</i> = 1000	
S. Alexander	anne e la	NR = 100	NR = 1000			
k_{11}^{0}	0,075	0,07315	0,07565	0,09	0,08807	
k_{22}^{0}	0,18	0,18636	0,18748	0,18	0,18521	
k_{33}^0	0,09	0,08850	0,08921	0,09	0,09437	
k_{44}^{0}	0,12	0,15986	0,11968	0,18	0,19367	
s ₁ ⁰	-0,06910	-0,08494	-0,06784	0	-0,01600	
s ⁰ ₂	-0,00051	-0,05785	0,00464	0	-0,00125	
s ⁰ ₃ .	-0,00052	-0,00700	-0,00067	0	-0,01656	
s4	-0,138	-0,16307	-0,13345	0	-0,00041	

Очевидно, что $T\sigma^2(\alpha_{Ti}) = MU_T U'_T, \ \sqrt{T}b(\alpha_{Ti}) = MU_T,$ где U_T – решение задачи

 $\frac{1}{2}X'R_TX - Q'_TX \to \min, \ GX \leq \sqrt{T}\alpha^0,$

где $Q_T = (\sqrt{T})^{-1} \theta_T' \varepsilon_T$, $\theta_T = \{x_{ti}\}$, t = 1, ..., T, i = 1, 2; $\varepsilon_T' = (\varepsilon_1, ..., \varepsilon_T)$; $G = -J_2$, $X = \sqrt{T} (\alpha - \alpha^0)$. При $\alpha^0 = 0$ (68) совпадает с (5) и для этого случая $T\sigma^2(\alpha_{Ti})$ и $\sqrt{T}b(\alpha_{Ti})$ находятся по алгоритмам разд. 2 и п. 2 разд. 3. Так, $\sigma^2(\alpha_{Ti}) = \sigma^2(\hat{\alpha}_{Ti})$. $\left[\frac{1}{4} + \frac{1}{4}(1 - r_T^2) + \frac{1}{2\pi} \left(\arcsin r_T + r_T \sqrt{1 - r_T^2}\right)\right], i = 1, 2$. Можно показать, что полученное выражение совпадает с (67) при подстановке в него $\alpha_1^0 = \alpha_2^0 = 0$.

Рассмотрим теперь практические аспекты вычислений по (67). В связи с тем, что истинные значения параметров и $\sigma^2(\hat{\alpha}_{Ti})$, i = 1, 2, неизвестны, заменим их оценками в (67). Применительно к первой формуле в (67) имеем

$$\hat{\sigma}^{2}(\alpha_{Ti}) = \hat{\sigma}^{2}(\hat{\alpha}_{Ti})p_{i}(\alpha_{Ti} / \hat{\sigma}(\hat{\alpha}_{Ti}), \alpha_{T2} / \hat{\sigma}(\hat{\alpha}_{T2}), r_{T}), \ i = 1, 2.$$
⁽⁶⁹⁾

Пусть регрессоры таковы, что $\lim_{T\to\infty} T_T^{-1} \sum_{t=1}^{\infty} x_{ti} x_{tj} \to \text{const}$, *i*, *j* = 1, 2 (требование сильной регулярности регрессоров [9, с. 43], необходимое для состоятельности α_{Ti} , *i* = 1, 2). Тогда $\lim_{T\to\infty} r_T = r$ и $\sqrt{T}\hat{\sigma}(\hat{\alpha}_{Ti})$ стремится по вероятности к константе. Поэтому предел отношения $\sqrt{T}\alpha_{Ti} / \sqrt{T}\hat{\sigma}(\hat{\alpha}_{Ti})$ будёт зависеть от предела $\sqrt{T}\alpha_{Ti}$. Если $\alpha_i^0 = 0$, то $\sqrt{T}\alpha_{Ti} = \sqrt{T}(\alpha_{Ti} - \alpha_i^0)$. Как показано в [7], пределом этой величины является случайная величина. Таким образом, $\sqrt{T}\hat{\sigma}^2(\alpha_{Ti})$ не стремится к константе, т.е. не является состоятельной оценкой при $\alpha^0 = 0$. Если же $\alpha^0 > 0$, можно показать, что оценка (69) будет состоятельной.

ЛИТЕРАТУРА

- 1. Райх А.Л. Регрессионная модель с ограничениями // Статистика и информационное обеспечение планирования. М.: Наука, 1982.
- 2. Соркин Л.Р. Об одном методе построения статистических линейных моделей участков производства с учетом априорных ограничений // Автоматика и телемеханика. 1979. № 1.
- 3. Ito T. Methods of Estimation for Multi-Market Disequilibrium Models // Econometrica. 1980. V. 48.
- 4. Lovell M.C., Prescott E. Multiple Regression with Inequality Constraints. Pre-testing Bias, Hypothesis Testing and Efficiency // JASA, 1970. V. 65.
- 5. Thomson M. Some Results on the Statistical Properties of an Inequality Constraints Least Squares Estimator in a Linear Model with Two Regressors // J. Econometrics. 1980. V. 19. 6. Liew C.K. Inequality Constrained Least Squares Estimation // JASA. 1976. V. 71.
- 7. Корхин А.С., Ганзбург М.И. Статистические свойства оценок методом наименьших квадратов при наличии априорных ограничений – неравенств // Экономика и мат. методы. 1987. Т. XXIV. Вып. 3.

and the second sec

the second s

- 8. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1988.
- 9. Демиденко Е.З. Линейная и нелинейная регрессия. М.: Финансы и статистика, 1981.

Поступила в редакцию 28 V 1993