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Abstract. The main goal of this paper is to summarize selected developments in the field of artificial societies
and agent-based modeling and to suggest, how this fundamentally new toolkit can contribute to solving some
of the most complex scientific and practical problems of our time. The entire field of agent-based modeling
has expanded dramatically over the last quarter century, with applications across a remarkable array of fields,
at scales ranging from molecular to global. The models described in this paper are a small part of worldwide
scientific and practical developments in the field of agent-based modelling and related areas. We have
attempted to give an impression of the vast range of application areas (epidemiology, economics, demography,
environment, urban dynamics, history, conflict, disaster preparedness), scales (from cellular to local to urban to
planetary), and goals (simple exploratory models, optimization, generative explanation, forecasting, policy) of
agent-based modeling. Agent-based models offer a new and powerful alternative, or complement, to traditional
mathematical methods for addressing complex challenges.
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INTRODUCTION: COMPLEXITY DEMANDS NEW MODELING TOOLS

Recent global shocks have demonstrated the coupling of large-scale systems. The COVID-19 pandem-
ic was not only a public health catastrophe, but an economic one as well, with combined effects distrib-
uted very unevenly within and between countries. However, in its cascading effects, the pandemic was not
unique. Disruptive technologies and seemingly local political or economic shocks can have system-wide
ramifications, to say nothing of climate change and other environmental perturbations. By any definition,
we are living in a complex system requiring new tools and new ways of thinking. One of these is Agent-Based
Modeling, which we review here.
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What are agent-based models?

What are agent-based models and how can they help us navigate a complex world? The classic agent-
based model is an artificial society of software individuals. They interact directly with one another in some
artificial environment, which could be a geographical landscape, an organization, or a social network. These
interactions can alter the agents and their environment, which in turn affects the agents, and so forth, of-
ten producing complex non-equilibrium dynamics. These micro-scale agent interactions can also generate
stable macroscopic social patterns, such as spatial segregation patterns, statistical distributions of wealth, or
dynamic epidemic trajectories. While, in the beginning, “Toy” agent-based models were used to illuminate
counter-intuitive mechanisms of herd immunity, economic scaling laws, and racial residential clustering,
they have grown into mature scientific instruments, where model-generated patterns (model outputs) are
compared to real world macro- (aggregated) data. When they agree, the micro-scale agent-based model re-
veals a generative mechanism, and constitutes a candidate generative explanation, of the macro-scale phe-
nomenon. J.M. Epstein uses the term “Generative Social Science” for the approach (Epstein, Axtell, 1996;
Epstein, 2006). There may be other generative explanatory candidates, in which case further data or experi-
ments may be required to decide between them, as in any science where theories compete. But, generative
sufficiency is a necessary condition for explanation. As Epstein, puts it, “If you didn’t grow it, you didn’t
explain it” (Epstein, 2006, p. 51).

Some social-level phenomena are difficult (even impossible) to “grow” in homogeneous populations of
perfectly-informed utility maximizers, of the sort one encounters in neoclassical microeconomics and game
theory. Rather, agents are typically heterogeneous, have imperfect information, and are boundedly ratio-
nal, to use Herbert Simon’s famous term. Recent agents, such as Agent Zero (Epstein, 2013), even include
a fear module grounded in cognitive neuroscience, which can override the agent’s conscious deliberations,
about risk for example.

Finally, due to the explosive growth of computing power, and the advent of specialized programming
languages for agent-based modeling, very large-scale agent-based models have been constructed in epide-
miology, economics, and related fields.

What distinctive contributions can the agent-based approach make in understanding and shaping what,
by any definition, is an increasingly complex world? One contribution is to close the micro-macro gap.

The micro-to-macro gap

For example, methods of multivariate regression analysis have been used to determine the relationships
between macroscopic socio-economic indicators. The resulting regression equations can be very useful in
predicting how a change in some aggregate variable (e.g., income taxes) will affect another aggregate vari-
able (e.g., total consumption). But, by definition, the regression equations are aggregate (macro-to-macro)
functions. As such, they can give no account of how the macroscopic patterns emerge from the bottom up,
through interactions at the micro scale. As we will review, the evolution of large-scale agent-based model-
ing promises to fill this gap, allowing generative explanations of macro phenomena, in turn allowing us to
explore how policies applied at the micro level may “bubble up” to alter social level patterns in desirable
ways. Moreover, the micro interactions typically involve heterogeneous agents interacting in networks, both of
which are difficult to capture in well-mixed compartmental differential equations. Finally, the micro world
(and the macro patterns) may be highly dynamic and far from equilibrium, eluding static equilibrium ap-
proaches. One important development propelling large-scale agent modeling has been computing power.

Explosive growth in computational power

From the 1990s to the present day, the power of computing systems has grown almost exponentially. In
comparison with 1993, the total performance of the 500 fastest supercomputers has grown almost 2 mil-
lion times and is more than 2.5 exaFLOPS 1, and the performance of the top-end F UGAKU? and LUMI?
systems is approximately 0.5 exaFLOPS. Presumably, the exaFLOP barrier for one supercomputer will be
overcome within a year or two.

The shear computational barriers to large-scale heterogeneous agent modeling have largely been over-
come. The main challenge now is to populate large models with cognitively plausible software individuals for

! Data of the portal containing the rating and descriptions of the 500 most powerful computing systems in the world: https://www.
top500.org

2 FUGAKU supercomputer website: https://www.fujitsu.com/global/about/innovation/fugaku

3 LUMI supercomputer website: https://www.lumi-supercomputer.eu
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purposes ranging from fundamental understanding of social dynamics to the design of policies. Prediction
is often assumed to be the goal. But often it isn’t. For example, the literal prediction of not-yet-evolved vi-
ruses is not in sight. However, agent-based modeling can help prepare for events we cannot, and may never
be able to predict. Novel pathogens and pandemics are prime examples, but the economic, political, and
environmental spheres provide others requiring new tools and new ways of thinking. Recent global shocks
illustrate, moreover, that in a connected word, they are coupled, as in the COVID-19 pandemic and eco-
nomic crises of 2020—2021.

Adjacent worlds

We note that many research centers worldwide are certainly involved in large-scale computational mod-
eling. Among these, one might point to: GTAP, MIRAGRODEP, MIRAGE, GLOBE, MULTIMOD,
GEM, Global Macrofinancial Model, The Long Term Growth Model, Moody's Research LabsInc. Model,
WorldScan, LINK, WEFM, KPMG-MACRO, NiGEM. A more detailed overview was given in the jour-
nal article “Herald of Russian Academy of Sciences” (Makarov, Wu et al., 2019; Makarov, Wu et al., 2020).
Generally speaking, however, these models are based mainly on the “top-down” equilibrium approach, and
do not purport to identify “bottom-up” (micro-to-macro) mechanisms, which have loomed large in the
epidemic and economic “black swans” of 2020. So, they belong to a different research programme.

Agent-based modeling, multi-agent systems, and distributed artificial intelligence

Likewise, we distinguish between the research programme for Agent-Based Modeling and the Multi-
Agent Simulation agenda. While these communities overlap, at its core, Multi-Agent Simulation is in the
distributed artificial intelligence (DAI) tradition and is oriented primarily toward applied mechanism design
and system optimization. For example, in the field of electronic commerce (Ehikioya, Zhang, 2018) DAI is
used to develop optimal trading strategies (Sugumaran, 2009), to plan optimal transport networks (Boulma-
koul, Karim, Lbath, 2021), or plan the effective use of network resources (Janbi et al., 2020; Yadav, Mahato,
Linh, 2020). By contrast, agent-based modeling is focused on generative explanations of social dynamics
as in the Schelling segregation model, the Epstein—Axtell Sugarscape model, and the Alife (Artificial Life)
tradition. While these communities have largely separate journals, conferences, methods, applications, and
audiences, there are intersections of note (Corea, 2019).

Swarm intelligence is an example (Ilie, Badica, 2013). It is a decentralized self-organizing system used to
solve optimization problems. For example, ant colony optimization algorithms, which simulate the actions
of ants, can be used to solve graph-based route finding problems (the traveling salesman problem) (Ilie,
Badica, 2010). Our focus here will be on the developments of agent-based modeling, though symbiosis with
related approaches is a high priority4.

While the field of artificial societies is our present focus, we do not claim that agent-based modelling is
the best tool for all purposes. There are many other analytical tools that may be more effective for particu-
lar tasks and that also have software implementations including neural networks and other machine learn-
ing methods, not to mention differential equations. These approaches can often complement one another.

The dialogue between methods

For example, in epidemiology, we often start by building a deterministic well-mixed (non-spatial) ordi-
nary differential equations model with homogeneous pools (e.g., susceptibles and infectives) and studying its
dynamics and equilibria analytically. These have given fundamental insights into core phenomena like herd
immunity and the vaccine levels required to induce it. Then we “agentize” the classic model, relaxing these
stringent mean field assumptions, introducing randomness (stochasticity), space (which could be a physical
landscape, a network, or both), heterogeneous agents and behavioral adaptation, to study the robustness of
the classical results. The ordinary differential equations and agent-based modeling results can differ radically,
suggesting novel approaches to epidemic containment (Epstein et al., 2008). To date, many specialized soft-
ware tools for building agent models (NetLogo, RePast, MASON, AnyLogic and others) have been developed.

Aims and organization

With this motivation, our aims are (a) to invite the reader to consider the potential of agent-based models
for studying the world around us, (b) to review selected results in several important fields, and (c) to sug-
gest fertile lines of future research. The authors of the paper published scientific works in which they gave
characteristics and described successful examples of the implementation of agent-based models (see, for
example, (Bakhtizin, 2008; Makarov, Bakhtizin, 2013; Epstein, Axtell, 1996; Epstein, 2006, 2013; Parker,

* The authors thank Robert Axtell for a very useful discussion of this distinction
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Epstein, 2011)). Here we focus only on individual points showing the benefits of the approach. In addition,
this is such a rapidly developing area that any review is supposed to be selective and incomplete5 .

This paper consists of 12 sections in two parts. The first one considers the history of agent-based models.
The second section is devoted to models of this class related to epidemiology, and the third considers agent-
based modeling of pedestrian traffic and population evacuation. The fourth section is devoted to issues of
demographic process modeling, and the fifth to the simulation of transport systems. Part two — Ecological
forecasting is considered in section six, while the seventh is devoted to issues of land use, and the eighth —
to urban dynamics. The ninth section considers models used for the reconstruction of historical episodes,
and in the tenth section, we briefly touch on the issues of conflict simulation. In section eleven of the paper,
we consider issues related to studying social networks using an agent-based approach. Agent-based models
of economic systems are considered in the twelfth section. Undoubtedly, the scope of applications of agent-
based models is wider, but we focused on these indisputably significant areas.

1. HISTORICAL EXCURSION

It is difficult to identify the exact dawn of the agent-based approach. Some researchers link the emergence
of agent models with cellular automata (CAs) of the 1940s. The great mathematician, John von Neumann laid
foundations for modern computing (the von Neumann architecture), participated in the Manhattan Project, and
dealt with issues of self-replicating systems. He proposed the concept of CAs, further developed by his colleague,
Stanislav Ulam. Over the next decades, a large number of CAs with a wide variety of rules for the transition be-
tween states has been developed, and myriad articles and books have been written on this topic6. One of the most
famous of these CAs is the game “Life,” developed by the English mathematician John Horton Conway in 1970.
It not only became a classic, but also gave rise to a huge number of variations (Gardner, 1970).

The American economist and 2005 Nobel Laureate in game theory — Thomas Schelling, in a 1971 article
“ Dynamic models of segregation” proposed a cellular automaton describing the process of segregation and showed,
surprisingly, that strong spatial segregation can emerge even when the individual agents have an extremely weak
preference for neighbours of their own colour (Schelling, 1971). The Shelling model was substantially extended
and applied to replicate true historical segregation patterns in multiple countries (Hatna, Benenson, 2015).

As proved by Matthew Cook (Cook, 2004), CAs are capable of universal computation, as are Turing
Machines, the Lambda calculus, partial recursive functions and other inter-translatable formalisms. So
CAs, while hardly unique in this respect, are in good computational company and have the distinct advan-
tage of being simple to program and easy to visualize. For many examples, see “A New Kind of Science”
(Wolfram, 2002).

One outgrowth of CAs is the field of Artificial Life, pioneered by Christopher Langton at the Santa Fe
Institute in the US (Langton, 1989). The field of CAs is a fast-moving area, and with the wide availability
of high-performance computing, this direction may be expected to advance dramatically.

Classic CAs do not have heterogeneous agents, or ones who interact with (and alter) an external land-
scape, or engage in sexual reproduction, form networks and tribes, or engage in resource conflict, trade,
and the transmission of cultures, immune systems, and diseases in a single unified artificial society. This is
the realm of Agent-Based Modeling.

The first such integrated Artificial Society model, named Sugarscape, was developed (without knowledge of
Schelling’s model) in the early 1990s. An author of the present article, Epstein, created what was widely called
“a foundational trilogy on agent-based modelling”. The first volume “Growing artificial societies: Social science

from the bottom up” (Epstein, Axtell, 1996) examined the now classic Sugarscape, which despite its relative
simplicity, made a significant contribution to the development of the generative epistemology discussed earlier.

The second volume, “Generative Social Science: Studies in Agent-Based Computational Modeling” (Epstein,
2006), was not about artificial society, but it was a collection of focused studies demonstrating the agent-
based approach as applied to a host of scientific fields including evolutionary games, economics, epidemiol-
ogy, archaeology, organizations, and conflict. These include several realistic empirical studies and practical
applications.

> The largest bibliographic databases Web of Science and SCOPUS show publications to have grown by 120 fold over the period
2000—2020.

® Data from the bibliographic and abstract base of scientific publications: https://www.scopus.com
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Dostoevsky

One of the challenges posed by Epstein at the end of “Generative Social Science” (Epstein, 2006) was to
“grow Raskolnikov”, an internally conflicted agent, whose behavior results from an internal competition
between reason and passion. Hume famously wrote that “Reason is...the slave of the passions” and so it
was for Dostoevsky’s immortal character, in which rational forces compete (unsuccessfully) with brooding
murderous emotional ones. Is there a way to build software agents that include some simple representation
of emotions, of bounded rationality, and of social connection (or isolation as the case may be)? These would
appear to be minimal constituents of a cognitively plausible agent.

The third volume, “Agent Zero: Toward Neurocognitive Foundations for Generative Social Science” (Epstein,
2013), was Epstein’s answer. Unlike the perfectly informed utility maximizer of economic theory, Agent Zero’s
behavior results from the interaction of an affective module (based on the neuroscience of fear), and a bound-
edly rational deliberative module exhibiting some systematic errors established by experimental psychologists
from Herbert Simon to Daniel Kahnemann and others. Agent Zero is also a social animal, influenced by other
(emotionally driven and statistically hobbled) agents in her network (networks are in fact endogenous). When
ensembles of Agent Zeros interact, they replicate several important social psychology experiments, and gener-
ate collective phenomena from contagious violence to seasonal economic cycles to flight from contaminated
areas and war zones. Because these are idealized exercises, Epstein (Epstein, 1999, 2013) called them “compu-
tational parables,” but they have since led to current empirical research on the ways in which contagious fear
can drive pandemic waves, addictive behaviors, and financial panics.

Since the mid-1990s, agent-based modeling has penetrated a wide variety of scientific and practical fields
and was successfully used to solve many problems. Let us now consider several of them in more detail.

Powers of ten

We will see that some scientific and practical fields are already bored under the skin, modeling at the mo-
lecular level, while others scaled the agent populations into the billions, modeling at global scale.

2. EPIDEMIOLOGY

To begin, let us focus on a pressing problem: the spread of infectious diseases (i.e., epidemics and pan-
demics). The classic differential equations model was published by M.O. Kermack and A.G. McKendrick
in “A contribution to the mathematical theory of epidemics” (Kermack, McKendrick, 1927). It is a so-called
compartmental model with three homogeneous pools — the susceptibles (S), the infectives (I), and the re-
covered (R). This SIR model posits perfect mixing (mass action kinetics) between the S and I pools and
yields fundamental insights about the nonlinear threshold nature of epidemics, and the conditions for herd
immunity among other phenomena. For a full review, see “The Kermack—McKendrick epidemic model re-
visited” (Brauer, 2005). Applied to well-mixed homogeneous settings, the model performs well.

However, the modern world is highly heterogeneous (e.g., by immune status) and, as COVID-19 has demon-
strated, transmission exploits contact networks on many scales, from local to global. Moreover, the classical mod-
els ignore endogenous behavioral adaptations. Some of these, like social distancing and mask-wearing, can supress
transmission, while others, like vaccine refusal, can amplify it. These behaviors, furthermore, may be driven not
by conscious “rational” deliberations but by unconscious “irrational” contagious fears. For models coupling fear
transmission and disease transmission, see “Coupled Contagion Dynamics of Fear and Disease: Mathematical and
Computational Explorations” (Epstein et al., 2008) and “Triple Contagion: a Two-Fears Epidemic Model” (Epstein,
Hatna, Crodelle, 2021). Fear of illness can be contagious in the absence of disease. In 1994, hundreds of thousands
of people fled the Indian city of Surat, fearing a pneumonic plague epidemic, although at the time of the mass exo-
dus the World Health Organization had not confirmed a single case (Epstein, Hatna, Crodelle, 2021).

Agent-based models can represent, albeit crudely, the behavioral adaptations of heterogeneous indi-
viduals, which together represent an artificial society. The computational agent model is able to track each
agent’s network and spatial contacts, disease state, movements, distancing and vaccine behavior, and so
forth. To test and calibrate the parameters of the model, it can be run many times to match statistics re-
garding the spread of such a known disease as smallpox (Longini et al., 2007). Within the framework of the
constructed agent-based model, the transmission of infection from one person to another is tracked (in a
so-called dendrogram) but equally important, agent behaviors resemble those of real people under stress,
with inherent errors, biases, and other departures from textbook rationality. These behaviors have shaped
global pandemic dynamics, including the multiple waves of the 1918 Spanish Flu and those of the ongoing
pandemic of SARS-Cov-2 and its variants.

OKOHOMUKA U MATEMATUYECKHWE METOAbBI TtomM58 Nel 2022
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Fig. 1. The result of a computer simulation of the GSAM model simulating the HIN1 virus pandemic in Tokyo
130 simulated days into the epidemic. Each diseased agent is marked with a dot (black is healthy, red is sick,
blue is recovered). Image from “Modeling to contain pandemics” (Epstein, 2009).

Planetary-scale agent models

Under Epstein’s direction, the Brookings Institution’s Center on Social and Economic Dynamics
developed a Global-Scale Agent Model (GSAM). It simulates the interaction of 6.5 billion individuals
moving on a world map, including intra- and inter-country contact dynamics (Parker, Epstein, 2011;
Epstein, 2009). It was the first infectious disease model on this scale and to our knowledge remains
the largest. Its development was funded by the US National Institutes of Health in response to the Bird
Flu H5NI crisis.

Data on contact patterns are better for some countries than others, but the advent of geo-coded location
data from blue-tooth enabled devices (notably cell phones) promises a watershed in contact modeling, and
is already central to contact tracing for COVID-19 pandemic containment.

Fig. 1 displays a global spread scenario for an HIN1 Swine Flu variant beginning in Tokyo (Epstein,
2009). Black pixels are healthy individuals, red are infected, and blue are recovered or dead. This screen
shot is the state of affairs 130 simulated days into the epidemic, illustrating starkly our overarching point that
the world is indeed highly connected. The model is stochastic so there are run-to-run variations even for
the same initial conditions and parameter values. So, any particular simulation, such simulation is shown in
Fig. 1, is but one sample path of a stochastic process. Typically, one will run the agent-based model many
times to build up a robust statistical portrait of its performance.

At Epstein’s Center for Advanced Modeling at Johns Hopkins Medicine, the GSAM was also used to
study Ebola in 2014—2015, and configured to represent hemispheric seasonal oscillations and other plane-
tary-scale dynamics.

The US National submodel of the GSAM includes 300 million agents, matched to US Census data. It
includes workplaces, schools, and hospitals. Travel between the US’s 30,000 zip codes is estimated econo-
metrically. The US model was used to study the value of school closures, travel restrictions, and other in-
terventions. Since viruses are constantly mutating, the arsenal of tools for combating them must constantly
expand, including through agent-based models. A variety of these models, including the above, are posted
at the New York University’s Agent-Based Modeling Laboratory directed by Epstein’.

Developing general purpose infectious disease models on these scales faces many software engineering
problems (e.g., load balancing, parallelization, network modeling). For the GSAM, see “A Distributed Plat-
Jform for Global-Scale Agent-Based Models of Disease Transmission” (Parker, Epstein, 2011). For more recent
developments, see “Charting the Next Pandemic: Modeling Infectious Disease Spreading in the Data Science
Age” (Piontti et al., 2018). Not only does behavior affect global spread, but it also shapes dynamics at the
level of urban health care systems, as we now discuss.

7 https://publichealth.nyu.edu/research-scholarship/centers-labs-initiatives/agent-based-modeling-lab
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Related international efforts

At Central Economics and Mathematics Institute of the Russian Academy of Sciences (CEMI RAS),
a model was developed for predicting epidemiological dynamics depending on quarantine measures to es-
timate peak loads on the healthcare system. To this end, an agent-based model was constructed, in which
human agents go through the stages of disease from infection to recovery or death. These transitions are
modeled not at the level of the homogenous group (as in the classical models), but at the individual level.
This makes it possible to take into account the heterogeneity of the population in terms of characteristics as-
sociated with the biological sensitivity of the people to infection and with their social participation (or with-
drawal from circulation due to fear) in the proliferation of the disease. Thus, the probability of severe disease
complications (stressing the health care system) depends on the individuals’ basic level of health, and on the
advance of infection taking into account social (e.g., kinship) connections.

The model was tested on the example of the COVID-19 epidemic in Moscow. The epidemiological
characteristics of COVID-19, given by expert practitioners involved in the examination and treatment of
patients, were used to plausibly mimic the course of disease within agents. Using computer simulations,
estimates of the social course of the epidemic were obtained for various values of the model parameters,
including the effect of quarantine measures on the number of infected and dead over the entire period of
the epidemic; the date of the onset of the peak of infection and its extent; peak demand for hospital beds,
including intensive care. The socio-demographic structure of the population and the epidemiological char-
acteristics of a specific infection are the parameters of the model, which can be adjusted for other regions
and infections for practical use as a decision support tool in regional and sectoral situation centers (Ma-
karov, Bakhtizin, Sushko et al., 2020).

Since the onset of the coronavirus pandemic, there has been a sharp increase in the number of publica-
tions that use an agent-based approach to estimate the rate of spread of the disease, depending on scenario
conditions.

Under the skin agent-based modeling

We have “zoomed in” from the global scale to the urban scale. We can go further. Agent-based model-
ing was bored under the skin to model intra-agent biological processes. These new directions include mod-
eling drugs and their effect on the body at the molecular level and studying processes of inflammation and
even tumor growth in cancers (Pourhasanzade et al., 2017) and the design of interventions (Sabzpoushan,
Pourhasanzade, 2018).

For example, the work of researchers from the University of Vigo (Universidade de Vigo, Spain) and the
University of Minho (Universidade do Minho, Portugal) examines sequential and parallel algorithms as ap-
plied to three-dimensional modeling of individual molecules in complex structures using an agent-based ap-
proach. The space for all simulations is a real and measurable object (bacterial cytoplasm). The approaches
developed make it possible to determine the arrangement of molecules with a sufficiently high accuracy to
reveal possible critical states of the objects under study. In addition, these approaches are implemented in
a cross-platform application, which facilitating the construction of three-dimensional models on several
hardware platforms and operating systems (Pérez-Rodriguez et al., 2016).

Agent-based modeling in medicine

An agent-based parallel-computing model of intestinal epithelium has been developed at the Univer-
sity of Chicago to simulate ileal inflammation in ulcerative colitis. According to the scientists, the use of an
agent-based approach is natural for displaying the activity of billions of cells containing DNA and RNA;
on the other hand, processing such an array of information requires the use of supercomputers, and in this
regard, researchers have developed a general-purpose spatial model for studying intestinal tissue (Spatially
Explicit General purpose Model of Enteric Tissue (SEGMENT), (Cockrell et al., 2015).

To model more complex processes, for example, simulating the work of all cells of the colon for one year,
according to the developers of SEGMENT, 450,000 processors will be required for 30 hours. And to simulate
the cells of the whole organism, taking into account the development of various diseases, the research group
links this possibility with the emergence of supercomputers with exascale performance, though algorithmi-
cally, SEGMEnT is already capable of this.

Concluding the topic of biological processes, we simply note that agent-based models are also used to
study (a) tissue morphogenesis, (b) the spread of invasive plant species, (c) the effect of environmental
changes on living organisms, and (d) population dynamics of several interacting species, to name a few re-
lated directions.

OKOHOMUKA U MATEMATUYECKHWE METOAbBI TtomM58 Nel 2022



12 MAKAROV, BAKHTIZIN, EPSTEIN

3. PEDESTRIAN TRAFFIC INCLUDING EVACUATION

Another major application of agent-based modeling is the simulation and optimization of pedestrian and
vehicular traffic, congestion modeling, and evacuation.

As an example, a model developed at the University of Western Australia and the University of Murdoch
(Australia) considers the pilgrimage to Mecca, including the ritual of stoning the Shaitan, the culminating
part of the Hajj. The number of pilgrims is constantly increasing (except for 2020 due to COVID-19), and
therefore, the number of casualties is also increasing — due to illness, heat, accidents and, mainly, crush
injuries. During the Shaitan ritual, the density of the crowd reaches 6—8 persons per square meter, as a re-
sult of which in some years the number of victims was more than 2400 personsS.

Although the Saudi Arabian authorities use modern video monitoring, communications, and crowd analy-
sis software, there is a danger of unexpected problems. In response, the Australian model was developed using
an agent-based approach to simulate various scenarios of the Hajj and the mentioned rite through computa-
tional experiments. The scenarios included both minor adjustments to the routes, and the introduction of a
timetable for pilgrims to travel to individual sections, laying routes for people to pass, and so forth. Through
the use of hybrid tools (combining operational monitoring technologies and agent-based simulators), it was
possible to optimize flows and significantly reduce the number of casualties (Owaidah et al., 2019).

A different urban congestion model was developed in 2011 by specialists from Epstein’s Center at Brook-
ings and the National Center for Computational Engineering at the University of Tennessee. They devel-
oped the Los Angeles Plume-Agent Hybrid Model, which uses computational fluid dynamics to calculate
the dynamics of airborne toxic contaminants and an agent-based model to simulate pedestrian and vehicular
traffic (Fig. 2). The behavior of the model agents is largely determined by fear of exposure to toxic emis-
sions. The high performance computing application allows one to quickly calculate many scenarios and
receive forecasts faster than in real time. In practical application these could be interactively transmitted
to dispatchers, so to ensure effective selection of escape routes (Epstein, Pankajakshan, Hammond, 2011).

Evacuation issues

Relatedly, scientists at the University of Science and Technology in Krakow (AGH, Akademia Gorniczo-
Hutnicza) built an agent-based platform to simulate crowd behavior at various scales — from small rooms
to large centers of attraction for a large number of people (e.g., stadiums, high-rise buildings). (Lubas, Was,
Porzycki, 2016).

Most of the models considering the movement of agents operate with fairly simple rules of behavior
(at operational and occasionally factical level). In the model proposed by the authors above, many addition-
al factors affect the decision-making process — the dissemination of information through the broadcasting
system, instructions for staff, etc. Depending on the location of the loudspeakers in the venue, the cells dif-
fer in the perceived strength of the sound, and the sound fields (SF) can be determined using the following
simplified formula: SF, |, = {(x’, y"): (x"— x)2 + (O — y)2 < 12}, where x, y are the coordinates of the sound
source, and r is the omnidirectional radius of the spherical wave. When the agent enters the zone of sound
fields, he can hear the message with probability P¢rand change his behavior (go to another emergency exit,
increase / decrease speed, etc.). Another important opportunity for adjusting decision-making at the sfra-
tegic level is communication within a group of agents in close proximity (using mobile communication de-
vices) defined by the set (L;, R;, §;), where L; = (x;, y;) is the leader of group i, and x, y are its coordinates;
R, = (ry, ..., r,); is the rule of group #; S; € {2, 3, ...,} is the size of the group /; r is a separate rule from the
number of possible #; and i € {1, 2, ..., m} is the group index.

The same group conducted simulations for the eastern stand of the Wisla stadium. The total number of
agents in the simulation is 11,808, the evacuation time for 95% of agents is 653 seconds, the fastest evacua-
tion is 3 seconds, the slowest is 653 seconds, the average speed of movement of agents is 0.316 m / s. Note
that over time, the average speed decreased, a congestion effect associated with the filling of the nearest ex-
its. According to the developers of the simulator, such a result indicates errors in the design of the stadium.
Observational data of fans exiting the eastern stand of the Wisla stadium corroborate the simulation results.

For the larger stadium, the Allianz Arena, with a capacity of 70,000 spectators, simulations were car-
ried out for 58,000 agents. The average evacuation time after multiple runs was 1117 seconds; the average

8 UK Web Publishing: https://www.independent.co.uk/news/world/middle-east/iran-saudi-arabia-murdering-pilgrims-hajj-stam-
pede-a7228466.html
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Fig. 2. The result of the model’s work — a part of Los Angeles with buildings (rectangles), the plume in the form
of a red cloud, and agents (vehicles) colored depending on the speed of movement

A source: Image from “Combining computational fluid dynamics and agent-based modeling: A new approach to
evacuation planning” (Epstein, Pankajakshan, Hammond, 2011).

movement speed of agents was 0.726 m / sec. The fastest evacuation was 2 seconds, and the slowest was
1117 seconds (Fig. 3).

Because the simulator can be used to identify bottlenecks in the evaluated venues (stadiums, buildings,
etc.), it can also be fused with online monitoring systems of crowded areas using CCTV cameras, depth
sensors, GPS trackers and other devices. The fusion of such systems and the described model will make it
possible to anticipate crowd behavior in real time to forestall hazardous congestions, providing an additional
analytical tool for decision support during public events (Lubas, Was, Porzycki, 2016).

Fig. 3. Visualization of statistics for the evacuation of agents in the lower part of the Allianz Arena stadium:
frequency matrix (left), thermal display of evacuation time (right)

A source: Image from “Cellular Automata as the basis of effective and realistic agent-based models of crowd behavior’
(Lubas, Was, Porzycki, 2016).

5
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Fig. 4. 3D simulation of the urban landscape in an agent-based model

A source: Image from “What if a nuke goes off in Washington, D.C.? Simulations of artificial societies help planners
cope with the unthinkable” (Waldrop, 2018).

In a study by scientists at Tohoku University (Japan) (Makinoshima, Imamura, Abe, 2018), an agent-
based model is presented that simulates the process of evacuation in an urban environment as a result of a
tsunami collapse. The model was built for technical implementation on supercomputers based on hybrid
parallelization technology using the MPI and OpenMP software interfaces. The calculations executed us-
ing it demonstrated the high realism of the results obtained. For example, the tsunami caused by the earth-
quake that occurred on March 11, 2011 in the area of the island of Honshu was reproduced. According to
the estimates of seismologists, this was the strongest earthquake in Japan for the entire observation period.

Statistical data on the behavior of a large number of pedestrians were used to adjust the parameters of
the model. For example, the speeds of movement of individual agents were determined taking into account

Fig. 5. A plume of radioactive fallout (yellow) stretches east across Washington, D.C., a few hours after a nuclear
bomb (of 12 kilotons capacity) goes off near the White House in this snapshot of an agent-based model. Bar heights
show the number of people in a particular place and the color indicates their health (red represents sickness or death)

A source: Image from “What if a nuke goes off in Washington, D.C.? Simulations of artificial societies help planners
cope with the unthinkable” (Waldrop, 2018).
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the average speed of their movement (1.34 & 0.26 m / s) so that the entire set of numbers corresponded to
the normal distribution.

Scientists at Virginia Tech University (now at the Biocomplexity Institute at the University of Virginia)
developed an agent-based model for assessing the effectiveness of the United States federal government’s
response to a nuclear attack on major cities (Washington DC, New York, Los Angeles etc.) which is known
as National Response Scenario 1 (Lewis et al., 2013).

Although damage calculations from such an attack were carried out since the middle of the last cen-
tury, the increased requirements for realistic simulations lead to an agent-based approach. This permits
the representation of several million mobile heterogeneous agents, differing across a wide set of param-
eters and behavior modes, interacting with a detailed multilayer geographic information system contain-
ing information on all houses, road networks, facilities, and other infrastructure. Figures 4 and 5 are from
simulations for Washington DC.

The Virginia Tech developers calibrated the model as closely as possible to reality, given incomplete
data. Some uncertain parameters were estimated by averaging the results from multiple model runs, dur-
ing which the values of the output indicators were compared with their postulated targets. This calibration
of the model was carried out sequentially for each of its parts.

Based on analyses of disaster behavior in numerous emergencies (fires, floods, earthquakes, etc.), the
developers argue that in severe crises, the agents’ behavioral repertoire shrinks from its normal variety
(which might include recreation, for example) to several core options (“seeking refuge,” “search for rela-
tives,” “search for a doctor,” etc.). Accordingly, their behavioral model implementation is minimal.

Supplementing this was data obtained from the American Community Survey, annually carried out by
the United States Census Bureau. This is one of the largest such surveys, covering approximately 3.5 mil-
lion people each year.

The geographic location of the population was customized using data from NAVTEQ, the world's lead-
ing manufacturer of digital maps and other data for geographic information systems used both in naviga-
tion systems and in numerous online maps.

The population of the artificial Washington metropolitan area, calculated on the basis of statistics, is
4 million people (in reality, according to 2017 data, about 6.2 million), the number of model agents living
in the territory subject to the attack is 730 833, and the number of possible locations for them is 146,337.

The health indicators of agents change over time and are calculated based on data from medical exami-
nations of people exposed to radiation.

CEMI RAS model of passenger behavior at an airport

In 2019, CEMI RAS developed an agent-based model of crowd behavior at airports (Makarov,
Bakhtizin, Beklaryan et al., 2019). It takes into account the influence of various factors (for example, the
number of entrances and exits, the number of check-in counters, physical dimensions of premises, the
number of passport control points, waiting time in the baggage claim areas, etc.). It also allows one to
determine the best values of the most important resource characteristics of the airport ensuring the elimi-
nation (dissipation) of crowd clusters. Computational experiments were carried out using the example of
Domodedovo airport (Moscow). Its basic characteristics are presented in Table.

We would note that further parameters are taken into account when modeling the dynamics of passenger
traffic at the airport (the waiting time for entering the airport and passing through security scanners, the
number and capacity of waiting rooms and business lounges, etc.). Computational experiments were aimed
at determining areas of crowd cluster formation (populated areas) that affect the average time spent by an
agent-passenger at the airport. In Fig. 6 agents belonging to high-density crowd clusters are highlighted in
black, with all other agents highlighted in grey.

According to the calculations, the main factors influencing the formation of crowd clusters at Domod-
edovo airport are the number of entrances, the number of operating passport control points and the average
waiting time at baggage claim areas. One of many combinations that can be explored, is the construction
of one more entrance to the airport building, a twofold increase in the number of passport control points,
a decrease in the average waiting time at baggage claim areas to a 30 minute maximum, and the opening
of 20 additional check-in counters effectively eliminates (dissipates) crowd clusters, reduces queues, and
thus improves passenger flow. Here, the agent-based approach made it possible to significantly increase
the realism of the results obtained.
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Fig. 6. Distribution of human flows and formation of crowd clusters in the current configuration of the airport
interior space. Image from “Development of Software Framework for Large-Scale Agent-Based Modeling
of Complex Social Systems” (Makarov, Bakhtizin, Beklaryan et al., 2019)

Table. Basic characteristics of Domodedovo airport affecting the dynamics of passenger traffic

No. Parameter Value
1 | Average passenger traffic per day 60,000 persons
2 | The average number of persons at the same time (including passengers, accompanying persons, | 7,000 persons
employees, etc.)
3 | Total area of all terminals 135 ths. m
4 | Number of runways 2
5 | Runway capacity (average number of landings per hour) 80
6 | Average number of passengers per flight 200 persons
7 | Number of check-in counters 130
8 | Check-in counter capacity 80 persons / hour
9 | Number of self-service kiosks 24
10 | Self-service kiosks capacity 20 persons / hour
11 | Number of passport control points 128
12 | Passport control point capacity 10 persons / hour
13 | Number of inspection lines in the pre-flight control area 15
14 | Inspection lines capacity 360 persons / hour
15 | Average waiting time in the baggage claim area 20 min
16 | Number of airport entrances 4
Lord of the rings

As an interesting aside, agent-based models have found applications outside the sciences. One area
is entertainment, for example, in the film industry. In the early 2000s, the MASSIVE software product
(Multiple Agent Simulation System in a Virtual Environment) was developed. It can simultaneously pro-
cess tens, hundreds of thousands and up to millions of animated objects, such as pedestrians and vehicles’.
MASSIVE was originally developed during the filming of “The Lord of the Rings.” The Director made
a request for software realistically animating the interaction of many software entities, such as in virtual
crowds and armies. Stephen Regelous, the founder of MASSIVE, answered the call by applying the concept
of artificial societies. This was a breakthrough for the film industry, since the previously used stop-motion

® MASSIVE product website: http://www.massivesoftware.com
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animation technologies no longer met the needs of film producers and viewers. For “The Lord of the
Rings,” about 200,000 agents were generated, each of which had primitive rules of behavior: dodge obsta-
cles; follow the direction of general movement; leave if dissimilar to nearest neighbours in the crowd, etc.

While new to the film industry, earlier models of this type included the famous “Boids” flocking and
obstacle-avoiding model of Craig Reynolds (Reynolds, 1987) and the Artificial Life models of Christopher
Langton at the Santa Fe Institute.

Steph. Regelous received numerous awards from film industry for advances in the technology behind
MASSIVE, including the “Oscar” for scientific and engineering achievements (Scientific and Engineer-
ing Award) and for the autonomous animation system of agents used for action scenes in “The Lord of the
Rings” trilogylo, which led to its applications in many other hit films'".

MASSIVE is an example of a very successful application of the agent-based approach in the film indus-
try, particularly for animating geographically distributed battle scenes.

Of course, none of these animated battles were compared to actual wartime battle data. Therefore, this
entire line of work, while a delightful (and lucrative) application of simple agents, is not properly part of the
method’s scientific advance, to which we now return.

4. DEMOGRAPHIC PROCESSES MODELING

Demographic processes are natural objects for agent-based modeling, as individual level phenomena like
birth rates, mortality, and migration generate aggregate spatio-temporal population dynamics. Not surpris-
ingly, demography is a widespread area of the agent-based approach application. It is enough to mention
here some distinctive works published over the last years.

Agent-based models of social interactions and demographic behavior include (Billari et al., 2007; Diaz,
2010). These authors considered such components of the demographic system, as marriage and changes in
the birth rate, etc. In addition, these works investigated differences in peoples’ behavior of different cultures
associated with corresponding differences in reproductive norms and behavior.

Artificial population models include models by (Silverman et al., 2013, 2014). These models include agents
having complex structures and a large number of states, that makes it possible to predict demographic dy-
namics at various levels — from households to the entire population of the UK.

Diverse applications of agent-based modeling to simulate processes associated with population move-
ment — from the creation of married couples and the impact of social norms on the birth rate, to residential
decision-making — were presented in the book “Agent-Based Computational Demography. Using Simulation
to Improve Our Understanding of Demographic Behavior” (Billari, Prskawetz, 2003).

Scientists from Tel Aviv University and New York University (Benenson, Orner, Hatna, 2003) developed
an impressive agent-based model considering the population of Yaffo (an area of about 7 km? to the south
of Tel Aviv officially called Tel Aviv—Yaffo). The ethnic composition of this settlement is as follows — the
Jewish majority (70%) and the Arab minority (30%), which tends to increase. The principal result obtained
during the experiments was: the resettlement of resident agents in the area depends to a great extent on the
ethnic composition of neighbors.

Earlier, we discussed Multi-Agent Systems and Distributed Artificial Intelligence as areas related to
agent-based models. Another and powerful relative of agent-based modeling is Stochastic Microsimulation.
These are detailed individual-based models, but agents do not interact directly with one another, as in the
classic agent-based models. Rather, agents’ states and behaviors, like one’s retirement age, are updated by
drawing from distributions. When these are known, the method is capable of reproducing observed patterns
accurately, and is a crucial step toward full “agentization” (on agentization, see (Guerrero, Axtell, 2011)).
CEMI RAS developed these models as well, at several scales.

In 2014, the Strategy of Economic and Social Development of St. Petersburg to 2030 was developed
(under the guidance of a foreign member of the Russian Academy of Sciences V.L. Kvint) and adopted for
implementation in St. Petersburg. The general goal of the Strategy is “to ensure a stable improvement in the

10 Section of the official website of the American Academy of Motion Picture Arts and Sciences, dedicated to the awards ceremony
in 2004: https: //www.oscars.org/sci-tech/ceremonies/2004

1 “Avatar,” “Edge of Tomorrow,” “Tron: Legacy,” “2012,” “Harry Potter,” “Pirates of the Caribbean,” “King Kong,” “Ben Hur,”
“Aquaman,” “Resident Evil,” “300,” “I, Robot,” “Godzilla,” “Pompeii,” “Game of Thrones” among others.

OKOHOMUKA U MATEMATUYECKHWE METOAbBI TtomM58 Nel 2022



18 MAKAROV, BAKHTIZIN, EPSTEIN

quality of life of citizens and increase the global competitiveness of St. Petersburg based on the implementa-
tion of national development priorities, provision of sustainable economic growth and use of the results of
innovative and technological activities.”

One of the main metrics for growth of the city’s economy, and the main measure of success of its socio-
economic policy is human capital accumulated by the residents of the city. Indeed, the first subject of the
Strategy is “Human capital development.”

The goal of CEMI RAS was to develop an individual-based model of St. Petersburg to be used as a planning
tool for implementation of the Strategy and to test various control actions in the course of computer experiments.
It is no accident that CEMI RAS chose a bottom up individual-based approach. There are many examples of its
successful applications to model the emergence of real urban agglomerations from the interaction of agents cor-
responding to various types of economic actors (Rui, Ban, 2010; Semboloni et al., 2004; Monticino-et al., 2006).

The first stage of the work was to create a demographic model of St. Petersburg. It was required to accu-
rately reproduce the age/gender structure of the city’s population at the predetermined initial point of time,
and also to adequately simulate processes of natural movement of this population.

At the beginning of the model’s operation, arrays of initial information are found in the empirical data-
base. These data include characteristics of the municipal districts of St. Petersburg, demographic data in-
cluding the age pyramid, the distribution of population by municipal districts, mortality rates by gender and
age, the total birth rate (the average number of children born by a woman during the reproductive period),
as well as the distribution of births by the age of the mother.

After that a population of agents (50,000) is created. They are assigned individual characteristics — like gen-
der and age structure — in such a way that structure of the artificial population accurately reproduces the one
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Fig. 7. Main working screen of the Social Petersburg model with an open project creation dialog

A source: Image from “Software and analytical complex ‘MOBIUS’ — a tool for planning, monitoring and forecasting the
socio-economic system of Russia” (Bakhtizin et al., 2020).
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calculated on the basis of the initial input data. The created agents are then settled in municipal districts (with
a common age sructure). Thus, an empricially accurate starting state of the agent-based system is established.

From there, the program iterates forward in time. Dynamics of the city’s population — as well as mortal-
ity and birth rates — are simulated step by step (one iteration of the model corresponds to one calendar year).

From mortality rate distributions differentiated by gender and age, the probability of dying for each agent
of the population is drawn. After that its fate is determined in this probabilistic manner, some agents are
removed, and the rest became one year older.

Then, based on the number of women of reproductive age, the total birth rate, and the distribution of births by
the mother’s age, the probability of having a child for women of each age was calculated. After that, it was proba-
bilistically determined for each female agent of reproductive age, whether she would give birth to a child in the
current year. If so, a new agent (aged zero) was created — the mother’s place of residence in the municipal dis-
trict. It was assigned the male or female gender with a probability of 0.512/0.488 and iterated forward as described.

To track the state of the model, and for the user to institute various control actions, the main indicators
of the simulation are shown on model interface screens at each step of the simulation (e.g., the number, the
proportion of satisfied residents). The working screen of the model interface is shown in Fig. 7.

The working screen also contains a schematic map of the city, grouping municipal districts forecasted for
the current year in terms of the provision of the population with places in preschool establishments.

In addition, the screen shows the following diagrams: the dynamics of population change relative to the
base year (also one of the target indicators for the St. Petersburg Development Strategy) and the dynamics
of the population structure by the main age groups — the employable (able-bodied) population, as well as
younger and older cohorts.

The user can also select (mouse click) any district on the schematic map and open (click) the window of the
corresponding municipal district. The adjustable parameter of the model is the index of aggregate birth rate. The
user can change this in the course of the model’s operation.

Given the detailed elaboration of the social system and the need to assess the level of life satisfaction of indi-
viduals, the agent-level approach turned out to be a more effective and realistic means of Strategy monitoring than
other tools.

The Russian demographic model

A bigger example is the Russian demographic model (140 million individual agents). It was developed in 2011,
and since was being constantly updated since. The model was tested against real data according to the following
metrics: a) the quality of reconstructing the age/gender structure of the population using agents both in the country
as a whole and in the context of the regions; b) model stability and low error of the obtained results of forecasting
the main demographic indicators in comparison with the variants of the official forecast provided by the Federal
State Statistics Service; ¢) the efficiency of program code parallelization when running on supercomputers.

The initial information for the model is the following statistical data for the base year:

e at the level of the country as a whole:
O distribution of the population by gender and age (age/gender pyramid), thousand people;
O mortality rates (per 1000 people) differentiated by gender and age;

O retirement age for men and women by years of the transition period corresponding to the 2018 pen-
sion reform;

e at the level of individual regions:

population, thousand people;

share of the population under the working age, %;
share of the population of the working age,%;
share of the population over the working age,%;

0O O O O O

aggregate birth rate;

O distribution of births by the age of mothers (share of births attributable to mothers from cohorts of five-
year age intervals within the reproductive age: 15—19; 20—24; 25—29; 30—34; 35—39; 40—44 and 45—49 years),%.
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Fig. 8. Working window of the agent-based demographic model of Russia
A source: Image from “Social modeling is a new computer breakthrough (agent-based models)” (Makarov, Bakhtizin, 2013).

At the beginning of the model's operation (initialization), the model loads the initial data, scaling the given
number of agents by region and creating the calculated number of agents. It then determines values of individual
properties associated with the simulated processes of population reproduction for each agent. According to the sim-
ulation algorithms, these properties are: the agent's age, gender, the maximum desired number of children in the
family and the number of children already born. In addition, the agent “remembers” its family ties. Its individual
collections (lists) are used in this case — collections of parents, children, brothers and sisters, and other relatives.

Agents' age and gender values are distributed in such a way as to reproduce as accurately as possible the age/
gender structure of the population specified in the initial data both for the country as a whole and at the level of
particular regions. For this purpose, further scaling of the obtained values related to the number of agents in each
region was performed: (a) by shares of the main age groups of the population in each region: younger than the
working age, the working age, and older than the working age (taking into account the observed retirement ages
for women and men for the base year); and also (b) by shares of each age cohort in the population.

The obtained values of the shares of the total number of agents within a region are then used as the prob-
abilities of a particular age for an agent in a given region. A specialized auxiliary module was developed to
carry out such scaling and obtain the age (life years) for each agent. The gender of an agent is also deter-
mined in a probabilistic way taking into account the gender ratio for the obtained age cohort.

In the model the maximum desired number of children in a family is a random variable from one to seven
with a given beta distribution shifted to the left (the maximum value is two children). A specialized auxiliary
module was also developed to determine the specific value of the desired number of children for each agent.

The stage of establishing family ties between agents is executed after gender and age properties are assigned.
First, a “mother” is selected for each agent from the collection of agents of the same region. This is a female
agent of a random age having the number of children, which is less than the maximum desired number. The
ages of mother-agents are based on the distribution of births by the age of mothers given in the initial data.
As model runs proceed, the number of children of the chosen mother-agent increases, and the child-agent,
mother-agent, and mother’s closely related agents introduce new relatives in the corresponding collections.

Fig. 8 shows the working window of the developed model (the points are agents). During the system’s
operation it is possible to obtain the latest information on the socio-economic situation of all regions of
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Russia (including with the use of cartographic information that changes in real time depending on the val-
ues of endogenous variables).

In the computer experiments aimed at forecasting the main demographic characteristics of the population,
the model showed good results when tested according to the performance metrics discussed above (accurate
age/gender stucture, model stability, and code efficiency). Testing these metrics was fundamentally important,
since the model was developed as a testing ground for developing socio-economic policies and assessing their
consequences. Particularly when computer simulations produce counterintuitive policy approaches, it is crucial
the model be credible empirically. Program efficiency is also important from a practical standpoint.

To estimate the efficiency of the algorithms used to parallelize the agent-based model, CEMI RAS
evaluated the dependence of the acceleration of parallel computations on the number of processors with
curves constructed in accordance with Amdahl’s law. Runs were also carried out using the resources of the
Lomonosov Moscow State University (supercomputer “Lomonosov-2") and the National Supercomputer
Center of the People’s Republic of China (supercomputer “Tianhe-2") to test the portability of the soft-
ware package. The absolute value of the simulation time due to newer processors in these cases was lower,
but the acceleration curves remained the same. Since agent mobility is crucial in many spheres, from urban
dynamics to epidemic ones, agent-based transportation modeling is another highly active sphere of appli-
cation. Indeed, it is fair to say that ABMs are displacing partial diffeential equations in several applications.

5. TRANSPORT SYSTEMS MODELING

Argonne National Laboratory developed software for building agent-based models to simulate traffic
flows (Fig. 9). The main utilities of the developed package, named POLARIS, are as follows: 1) a module

VMS Sign

Traffic Incident

Fig. 9. Road network editor

A source: Image from “POLARIS: Agent-based modeling framework development and implementation for integrated
travel demand and network and operations simulations” (Auld et al., 2016).
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responsible for parallel processing of events; 2) a module implementing interprocess communication; 3) a
library for visualization; 4) a library for data input/output, etc.

The POLARIS software platform allows integrating various procedures (distribution of traffic flow cal-
culations among processors, agents’ demand for trips) within a single model with a shared memory that
processes all events occurring during urban system simulation (Auld et al., 2016).

The project developers note that until recently individual components of models considering transport sys-
tems, such as traffic flows, gas emissions, the formation of a request for a particular type of urban transport,
and other factors were not simultaneously taken into account. However, it is precisely the nonlinear inter-
actions among these dynamics that is of greatest concern. Hence, the need for high performance integrated
traffic modeling frameworks like POLARIS, whose in interface for Chicago Central Area is shown in Fig. 9.

Experts from IBM Research Laboratory in Tokyo in cooperation with the scientists from the Tokyo
Institute of Technology developed a platform for building large-scale traffic flow simulators using the new
X10 parallel programming language (Suzumura et al., 2012). Experiments with the developed models for
more than 100 cities around the world demonstrated a linear performance gain depending on the number
of processor cores used.

In addition to the platform mentioned, a traffic flow simulator called Megaffic (derived from IBM Mega
Traffic Simulator) was developed. It also uses the X10 programming language developed for parallel pro-
gramming. This language is essentially an extension of the Java language with additional support for arrays
and processes, as well as shared global address space.

Agent-based model of the Moscow transport system

In turn, CEMI RAS developed an agent-based model of the Moscow city transport system, which makes it
possible to assess the consequences of changes in its operation within the framework of urban agglomeration re-
sulting from: 1) the introduction of new radial or circular highways; 2) temporary closure or elimination of any
element of the transport system; 3) introduction of economic sanctions (highway toll, congestion charge etc.).

The greatest challenge in building the model was a shortage of detailed inter-district traffic data. A com-
mon surrogate in such cases is to use a so-called “gravity model.” This class of model assumes that the traf-
fic from one district to another varies directly with the capacity of the arrival and departure districts and

Fig. 10. Implementation of Moscow city transport network using AnyLogic package

A source: Image from “Social modeling is a new computer breakthrough (agent-based models)” (Makarov, Bakhtizin, 2013).

OKOHOMUKA U MATEMATUYECKUWE METOAbBI TtomM58 Nel 2022



AGENT-BASED MODELING FOR A COMPLEX WORLD 23

inversely with the distance (or cost of travel) between these districts. Typically, the denominator is the dis-
tance raised to a power (estimated econometrically); hence its name.

There are three Types of agents in the Moscow model: 1) agents (persons) intending to get from point
A to point B; 2) passenger cars carrying an average of two people; and 3) a public transport carrying ap-
proximately 150 people.

Agents of the first Type make a decision on the choice of transportation mode, i.e. on the choice of an
agent of the second or third Type (based on of factors discussed below). Agents of the second and third
Types are tied to an animation diagram that changes in real time, according to their speed of movement and
location at time ¢, all of which varies with the specific situation.

The animation diagram is a city map (in this case, Moscow, although this is not essential) elaborated up
to the level of major transport arteries (Fig. 10).

When modeling, we determined the behavior of individual agents, while more general phenomena —
traffic jams or a parameter reflecting the level of traffic congestion — emerge from the bottom-up in the
process of the model’s operation. As discussed at the outset, a distinct advantage of agent-based modeling
is the ability to generate global dependencies and patterns through agent interactions without prior knowledge
of them. 1t is crucial to credibly represent the logic of individual agent behavior. While this is an empirical
challenge (as in all social sciences) we could not have built a more realistic simulator with other tools.
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