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Abstract. In the following article, we consider forward contracts, which are financial instruments used
to buy or sell some assets at a certain point in the future, and at the fixed price. Such contracts are
customizable and traded over-the-counter, unlike futures, which are standardized contracts traded at
exchanges. Particularly, we focus on in-arrears interest rate forward contracts (in-arrears FRA). The
difference from the vanilla FRA: floating rate is immediately paid after it is fixed. We calculate the
convexity adjustment to the forward simple interest rate in the single-factor Vasicek stochastic model
for such contracts with different payment dates. With the help of the no-arbitrage market condition it
is shown that such adjustments should be non-negative when payments occur before the end of accrual
period and should be negative when payments occur after accrual period. We also studied in-arrears
forward and option contracts, where fixed interest rate and principal, on which this rate is accrued, are
denominated in different currencies (so called quanto in-arrears FRA and quanto in-arrears options).
We checked that quanto in-arrears FRA equals in-arrears FRA in case when rates and principal are from
the same currency market, and that quanto in-arrears option contract prices are greater than those of
vanilla options.
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1. INTRODUCTION

Forward contracts are widely used financial instruments used for purchase/sell of some asset at a certain
date in future at the specified fixed price.

An example of forward contract is a forward rate agreement (FRA) on interest rate as an underlying as-
set, which we define in the next section.

FRA is a cash settled contract with the payment based on the net difference between the floating interest
rate and the fixed rate (Hull, 2017). Fixed rate makes the initial price of the FRA being equal to 0 is called
Jorward rate.

There is an exotic in-arrears contract which is settled at the beginning of the forward period — not at the
end. The forward rate of an in-arrears contract is greater than the forward rate of a vanilla contract and the
difference between these two rates depends on stochastic model used to simulate financial processes and is
called convexity adjustment.

Studies on this topic may be found in (Mcinerney, Zastawniak, 2015), where LIBOR in-arrears rate was con-
sidered. The adjustment was calculated using the replication strategy and solving stochastic differential equation in
the LIBOR market model. Another approach using the change of measure was studied in (Palsser, 2003), where
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simple lognormal stochastic model was chosen to calculate an in-arrears forward LIBOR rate. In (Gaminha,
Gaspar, Oliveira, 2015), authors explored the Vasicek and Cox—Ingersoll—Ross models within LIBOR in-arrears
rate. The authors obtained the adjustment from stochastic differential equation (SDE) numerical solution of con-
vexity term SDE and found the partial closed-form solution for Vasicek model. There are also researches on in-
arrears options — caps and floors (Hagan, 2003) where prices of options were found using the replication strategy
for option-like pay-off. Finally, in the previous paper, written by two authors of this article, (Malykh, Postevoy,
2019), pricing of in-arrears FRA and in-arrears interest rate options using change of measure were considered.

There is also another kind of exotic forward contracts — quanto FRA, in which the notional principal
amount is denominated in a currency other than the currency in which the interest rate is settled.

Such contracts were studied in (Lin, 2012), where author used forward measure pricing methodology to
derive the valuation formulas within the Heath—Jarrow—Morton interest rate model. Research on quanto
interest rate options may be found in (Hsieh, Chou, Chen, 2015), where authors also adopted martingale
probability measure to obtain options pricing in the cross-currency LIBOR market model.

In this article we are going to continue our previous work and expand change of measure method in a
single-factor Vasicek stochastic model (Vasicek, 1977) to consider cases, when the payment in FRA occurs
in other dates,— not only at the beginning or at the end of the forward period. We prove that the convex-
ity adjustment is negative when the settlement date takes place after the forward period. We also apply it to
explore quanto FRA. Moreover, we combine it with the in-arrears FRA and come to the in-arrears quanto
FRA. At the end, in-arrears quanto options are briefly considered.

2. DEFINITIONS

Let us introduce definitions which we use further in this paper.

Definition 1. Zero-coupon bond (ZCB) with maturity 7'is a security which promises to pay owner lcur-
rency unit at 7. We denote ZCB price at the moment 7 by P(#,T’), where P(#,T) is an F,-measurable function
and P(T,T)=1.

LIBOR is the indicative rate on which banks are willing to lend money each other, LIBID is the in-
dicative rate on which banks are willing to borrow money. We assume equivalence of LIBID and LIBOR.
MOSPRIME is a Russian analogue of the LIBOR rate, i.e. MOSPRIME is the indicative rate on which
banks are willing to lend money to each other in rubles. We also make standard “Black—Sholes—Merton
model” assumptions: no transaction costs; no default risk; no funding risk; no liquidity risk.

Now we define LIBOR rate and forward rate agreement more precisely.

Definition 2. We denote LIBOR spot rate at the moment ¢ for a time period o > 0 by L(#,, + o). Bank
can lend (or borrow) N currency units at the time 7 for a period o and get (return) N(1+al(t,t,f+ o)) cur-
rency units at the moment 7 + a.. Technically, MOPSRIME rate definition is similar to the LIBOR one, i.e.
it is a spot rate with simple compounding. We use the LIBOR and MOSPRIME terms interchangeably
through the article.

Definition 3. Forward rate agreement (FRA) is an over-the-counter contract for the exchange of two
cash flows at a certain date in future. Floating reference rate is fixed at 7,. Buyer of this contract at # <7
with maturity 7), fixed rate K'and principal N, agrees on following obligation between counterparties at 7.:

1) pay (T, -T,)KN currency units to contract counterparty,

2) receive (T, —T))L(T,,T,,T,)N currency units from contract counterparty.

The price of the FRA at 7, is equal to (T, =T, )(L(T,,T,,T,) - K)N.
For simplicity, we assume that principal amount N =1.
Definition 4. Forward rate L(#,T;,T)) is the fixed rate K which makes price of the FRA contract at 7 equal

to 0 for 7 <7 <T,.
! P(f,T])-P(t,Y})
It can be shown (Hull, 2017), that L(#,7,,T,)= .
(Tz_T;)P(t)Tz)

Now, we consider exotic in-arrears FRA: this contract is settled at time 7.

Definition 5. In-arrears FRA (iFRA) is an over-the-counter contract for the exchange of two cash flows
at a certain date. Floating reference rate is fixed at 7'. Buyer of this contract at 7 <7 with maturity 7, fixed

rate K and principal N, agrees on following obligation between counterparties at 7, (not 7):
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1) pay (T, -T)KN currency units to counterparty,
2) receive (T, —T))L(T,,T,,T,)N currency units from counterparty.
The price of the iFRA at 7, is equal to (7, - T )(L(T,,T,,T,) - K)N.
We denote K which gives iFRA a 0 (zero) price at by iL(t,T,,T)).
A portfolio of assets is called self-financed if its value changes only due to changes in the asset prices.

Definition 6. Self-financed potrfolio A4 is called an arbitrage portfolio on some probability space (Q, F,P)
if its price (value) at the time ¢tis VA(#)<0and 3T >¢: P(VA(T)=0)=1and P(V4(T)> 0)> 0.

We use the assumption of absence of any arbitrage portfolio on the market.

3. IN-ARREARS FRA

It was shown (Malykh, Postevoy, 2019) the that convexity adjustment (CA) for in-arrears FRA under
single-factor Vasicek model is:
1 P@T)

CAt, T ,T,)=—x
®1.1,) T,-T, P@T,))

(e'-1),

where

= G_ L _ Le‘za(Tl") — le‘a(rz -T) + ie—Za(Tz—Tl) +le‘a(Tl+Tz)*’2‘” — Le‘Z”(Tz -1 ,

2a 2a a 2a a 2a
P(t,T)=A(t,T)e ¢Dr®),

B(1,T)=(1-e*T0)/aq,
0 o’

A(t,T)=exp((B(t T)—(T - t))(__ﬁj_c—’

where 0 and a are constant parameters in this model, which is given by the following SDE for instantaneous
interest spot-rate: dr(t) =(0—ar(t))dt + cdW (t). Now we are going to study other exotic FRAs in this model.

4. EXOTIC FRA WITH DIFFERENT PAYMENT TIME OPTIONS

Along with the in-arrears contracts we can construct a FRA with payment date Tp o suchast<T <T,
T < T < T,,orT,< T . We consider each of these contracts using the same change of measure tec’ilmqu

descrlbed in (Geman Karom Rochet, 1995).
Let us denote exotic forward LIBOR rate by /L. Forward rate is the expected value of the future rate un-
der appropriate forward measure (Privault, 2012). Then
ir.T,,.T,T)=E, [ (T,.T,.T,)| F, | (1)
(E — conditional expectation value).

I’l

Theorem 1. In a single-factor Vasicek model we have

. P(t,Tz)IT < - P(, Tpay)
zL(t,Tp s 2) LT T)+L(t s 2) P(tT )
@)
.\ P(t,T)) ( P(t,T)) P(t, pay)e P(t,Tl)_ll P(t, Tpay)
P(t,Tpay)r P,T,) P(t,Tz) P(t,T,) TpaySTz P, T )
where
1=i( —all,-T,,,| _ e ~a(Ty+T,,,~21) _ —a(T ~min(7}, Tpa}))_'_e—a(T “2t4min(7},T,,)) —a(T #max(1y =27, T, =2T1)) |
2a3
+e —a(T =2t+max(T}, T“’”})>+e 2a(T, -min(7}, Tpa})) e—2g(T2—])\)
(1, _, — indicator function).
pay =2

The case Tpay =T, is considered in (Malykh, Postevoy, 2019). Now we consider other cases.
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4.1.t<T K<T
pay 1

Using results from (Privault, 2012), we change the measure to O, in (1).
2

P

. _ P@T) 1 _
iL(t,T,,,T,T,)=——2"E, | LT,,T,T,)~———|F |=

a o,
pay P(’sT,,,,y) b P(Tpay’TZ)
P(.T,) )
B P, T )EQTz [L(TI’TVT2)(1+(T2 _Tpay)L(Tpay’Tpay’T2))|Ft:| B
’ " pay
_ P@T)

o

(L(t,Tl,T2)+(T2—Tpay)EQT2 | LT, T, T)LT,, . T T2)|J-;]).

pay’” pay’

CPULT )

Using the tower property of conditional expectation:

EQT2 [L(TI,TI,TZ)L(T T ,T2)|j-“fJ=EQT2 {EQTZ [L(T T,T,)L(T

pay’” pay R pay

107, 17|

T, )L, .T

pay’ " pay’

_ EQT2 [L(T

pay

)| 7 ].

Next we find dynamic of the following process under Q, -measure:

L(Tpay’ T; > 7—'2 )L(ijy’ Tpay > 7—'2 ) =
_ 1 [P(Tpay’ﬂ)P(Tpay’Tpay)_ P(Tpay’Tl) _ P(Tpay’Tpay)_i_lj'
(T,-T)(T, _Tpay) P(T,,ayaTz)P(Tpayst) P(Tpay,Tz) P(Tpay,Tz)
The 2nd and the 3rd terms are the martingales under QTz—measure. We need to know dynamic of the Ist term.
d[ P, T)P(, Tpay )J _
P, T,)P,T,)

_ P(t’YE)P(t’Tlmy) Tpay T| — Tz Tz TPG,V — Tz TI - Tz
—m((é (O+C (=202 (@)dW = () +C 7 (1) =C> (D) (1) -G (t))dt),
where ¢'i (1) =oB(t,T). So,
AT, T)P(T,,.T,,) POT)PWT,,) T (1T, - .
P(T, T)P(T,.T)  PWT)PW.T,) ‘”‘pU, (€ )+ =2 0)aW 1)+
HE - 0) (65 0-" (1)) -0.5(C () + " (0 -267 () dr ) .

Now we find expectation under QT -measure:
2

pay’ pay’~ pay pay) ef

% | p(T, T)P(T, ,T,) '| PGT,)P(T,)

pay pay

b

(T, T)PT, ,T )}_]_P(r,Tl)P(t,T

where
T,-T ) —a(T,+T

Toay /T T . , 62 [ i
]ZJ.,M(C pa,r(t)_(;z(t))(gl(t)_gz(t))dt_zﬁ_S(e (T pgy) _ o 00T
a

_e*ﬂ(T2*Tpay)+e—a(T2+Tl)a},—2t) _e—a(Tl+T2—2T[my)+e_a(T] +r2_2,)+efza(rfrpay)_e_ztl(rz_,))'

21)

Putting it all together we can write

iL(t, T, .1, T,)=L(t,T,T)+ L, T, T,)Pt,T) - P(t,T, )/ Pt,T, )+
. PaT) P(t,Tl)P(t,Tpay)e,_ P(.T) _P(t,T,,ay)Jr 1l
P.T, )T,-T)\ Pt.T)PtT,)  PtT) PtT)
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42.T <T, <T,
pay

Under Q, -measure:
2

. _ P(1,T)) 1 -
i, T, T, T)=—2=E, | LT,,T,T,)——|F, |=
’ P, Tpﬂy ) P(Tpay > Tz )

P@,T,) B
=5 o, L, 1, T (14T, - T, LT, T, T))I 7, | =

pay

P@,T)
_ 2 (L(;,TI,T2)+(7“2—TPay)EQT [L(T T Tz)L(Tpayanay,T2)|~7:,])=

P(.T,)

_ P@T)
PWT, )

ror

(L(t,Tl,T2)+(T2—Tpay)EQTZ [L(T T Tz)L(Tl,Tmy,Tz)Lﬂ).

P

Using the same technique as in Section 4.1, we can find the solution for this contract:

iL(t, T

pay

T,T,)=Lt,T,T,)+ L(t,Tl,Tz)(P(t,T2)—P(t,Tlmy))/P(t,T )+

P(t,T,) [P(t,Tl)P(t,T,,ay) . PWT) PGT,) ]
+ el - - +1],
P(t.T, )T, T,

pay

P(t,T)P(1,T)) P(,T) P@T,)

where

T T. T, T. 2 —a - —a(Tl}+ =2t
1= (@ =N =20 Jdr =5 e T 20

et | g-a(Ti+7,-20) _ o=a(Ty+ T, =2T) o =a(Ty+T,,=20) | o -2a(Ty~T)) _ o-2a(Ty~1) )

3)

43.T,<T

pay
Forward LIBOR rate has the following formula in this time payment case:

_ P(t,T,) P@.T, )P0T) | PWT, )
P, T, )T,-T) ’

iL(t,T

pay

,1,,T,) e
» P(t,T,)P(t,T,) P(,T,)

where [ is taken from (3), as both cases take place after 7.

In the case when payment occurs after accrual period, we can prove that adjustment should be always non-
positive similarly to what we did in (Malykh, Postevoy, 2019) for payments before the end of accrual period.

Theorem 2. Suppose that P(L(T,,T,,T,) # L(t,T,,T,)) > 0 under real-word measure. Then the forward rate
iL(t,Tay,Tl,Tz) <forward rate L(t,T,,T)), t<T <T, < Tpay.

P rp o o f. We can prove it by contradiction assuming opposite and constructing an arbitrage portfolio.

Assume that there is a forward rate on the market and iL(z, Tpay,T] ,1,)= L(¢,T,,T,). Without loss of gen-
erality let (7, —7,) =1 year. Without loss of generality let (7, —7,) =1 year. Consider the following strategy:

1) time #. buy FRA with K= L(#,T,,T,), N =1 and sell iFRA with payment date Tpay, K= iL(t,Tpay,Tl,Tz)
and N = P(¢,T,)/ P(1,T,). Portfolio value V, = 0;

2) T;: LIBOR rate is fixed and we enter into forward contract to buy (L(T,,T,,T,)-
- L, T,T,)P(T,,T,)/ P(TI,TW) number of zero-coupon bonds (ZCB) with maturity Tpay at time 7,. It
costsus F=L(T,T,,T,)- L(¢,T,,T),),

3) T,: FRA settlement occurs. Portfolio value is

VT2 =(L(TI,TI,Tz)—L(t,Tl,TZ))—FJr(L(Tl,TI,TZ)—L(t,Tl,TZ)P(Tz,Tpay)P(Tl,Tz)/P(TI,TW));
4H T . iFRA settlement occurs

_ P(T.T) P(t.T)
Vv, =(LT.T.T)-LtT,.T)) +
pay P(T.T, ) PT,)

pay

(iL.T,,T,)~ L(T,.T,,T,)).
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We use the fact that (7, -T,)L(t,T,,T,) = P(t,T,) / P(¢,T,) -1 and that P(¢,T,)> P(¢,T,) Vi<T <T,. Now
we can rewrite out portfolio value:

Ty

v, z(L(Tl,Tl,TQ—L(t,TPTz))(

P(T.T)) P@.T)

pay

P(T,T ) PT,)

_(P.T) Pa.T)) [ PT.T)  PG.T)_
P(T,T,) PGT)) | P(T.,T ) PtT,)

pay

_(PTLTHP@T) - P, T)POT NPT, T) P T,) - P, T, )P0 T))

P(T,T) P, T)P(T,T, )P(.T,)

pay

JP@T)PTLT, )(P@T) - PET))

pay

P(T,.T) P(t.T,)P(T.T, )P(1.T,)
It’s worth noting that P(V, >0)> 0, because of our assumption, that P(L(7,,T,,T,) # L(#,T,,T,)) > 0.

We managed to construct an arbitrage portfolio which contradicts to our assumption of no-arbitrage.
Hence, iL(t,Tpay,Tl,Tz) <LtT.T)).

1’72
35
- e ——————— — — ] 31 5. IN-ARREARS FRA BEHAVIOR
7
25 ',/ — 25 Using results from Section 4.1—4.3 we proved the
& / common formula (2). We can also find the limit of
520 I/ adjustments when 7. — . We denote 1, =7, -T,
= 154 e —————— 4 t,=T7-T ,t,=T -T _Then
&~ y — =T =05 2 1 pay’ "3 2 pay
&’g 10 7 pay Ik} TI . 1 e 62
l‘: 5 l/ - < Tpay< TI,TIZO.S,TZ:O.S llmCA =_exp [__2_]11 (e-/_l)’
T, >0
S, — 1< T,<T,1=03,1,=-02 1 K @ -
- _ where
s \\‘~ ,<T,, t,=—021=05 J= (62 / 203)(e—a\r2\_ efa((T;)szmﬂllTZ §0)+
------------------------------------- _8
— 1 1 1 1 —
10 0 5 A p g 0 e za((r3)]rz>0+tlITZSO)_e*a(‘T2‘+T3+(*T2)+))‘

T,, years Using these properties convexity adjustment with

Fig. 1. Comparison of adjustments: CA (convexity different payment date properties is given in fig. 1.

adjustment) for forward LIBOR rate with z=0; 6 = 0.035;
1=0.5; 1(f) = 5% (bps — 1 basis point is equivalent to 0.01%
(1/100th of a percent) or 0.0001 in decimal form)

6. QUANTO IN-ARREARS FRA

We consider another exotic modification of FRA — quanto FRA.

Definition 7. Quanto FRA is a forward contract, where buyer of this contract at # <7, with maturity 7,
fixed rate K in d-currency (domestic) units and principal N in f-currency (foreign) units, agrees on follow-
ing obligations with counterparties at 7;:

1) byuer pay (T, —=T,)KN f-currency units;
2) receive (T, -T)I(T,,T,,T,)N f-currency units, where L — LIBOR rate in d-currency units.

Definition 8. Quanto in-arrears FRA (igFRA) is a forward contract, where buyer of this contract at 7 <T
with maturity 7, fixed rate K in d-currency units and principal N in f-currency units, agrees on following
obligations with counterparties at 7}

1) byuer pay (T, —=T,)KN f-currency units,

2) receive (T, -T,)L(T,,T,,T,)N f-currency units, where L — LIBOR rate in d-currency units.

Let N = 1.

By igL we denote forward rate of igFRA contract. Notation EQ , means mathematical expectation by

gyl

forward measure 7, of payments in f-currency. Then igL(¢,T,,T,)= ]EQ / [L(T,,T,,T,) | Fl.

We need to change measure to Q;’ for payments in d-currency. Radon—Nikodym derivative is
1

d Q;fl

d QTfl

OKOHOMUKA U MATEMATUYECKWE METO bl

_PT.T) P (t,T)X(1)
FT) Pf(Tl’T;)X(T;),

ToM 58 Ne3 2022



CALCULATION OF THE CONVEXITY ADJUSTMENT TO THE FORWARD RATE 121

where X (¢) — spot exchange rate at time 7. Then

__P®T) PTLT)
de| } i [L(T.,Tl,m pa T YWIE | @

We use the fact that the forward exchange rate with maturity 7" is X . (1)= P (t T)X(t)/ P,(t,T). Then
igL(t,T.T,)= (X (z)) E, [X (T)L(T,.T.T, )|;f,]

To calculate this expectat1on we need to:

1) find SDE for process X r (¢) in forward measure Q;fl ;

2) find joint distribution of X r (T)L(T,,T,,T,) in forward measure Q;’l .

First, write SDE of major processes:

iqL(t,T,T,) =B, {L(T T.T,)

l

BT i+, B, @ T)aw (t) LD, o, B, WS, @
W 'a OpPp b P(1.T) 7 Or Pr, A
dX () _

Yo =(r,(t)~r,(0)dt + 0, dW ().

WQ means Wiener process for process P, in measure Q in currency d. To find SDE of X, (t) in risk-
neutral measure Q we need to write P (t,T) in currency d. Changing the measure we get

dpP.(t,T)

— _rT T T = _ -
—P %8 (r (n-¢ch, (t)GXpP X)+C aw ,Pf (1), where (;Pf(t) GPfBPf (t+,T) and Prx correlation be
tween P and X. Now write SDE ofX (t)

oX, 8XT 6XT o’ X, o*X,
dix, )— _h dP, +— dP +—2LdX +0.5 d (dP,))* + —(dP,)(dP,)+
P, P, oX oP? oP,0P, 4
o’ X, o’X,
d dP,))(dX)+ L(dP,)>.
e P @R

Switching to QTl—measure:
d(X,)/ X, ==C (AW, (D+C3 (AW, (1) +0,dW] (1),

din(X,)==C (AW, ()+C} (DaW,), ()+0,dW ), (1)
2
—0.5( Gy (AW, 0+ (VaW], (D+0 ,d dflx(t)),
X, (0)=X, ex([] ( Cp W], )+C) 0aW], )+, dW [ ()~

T, 2
—0.5j1( Gy (AW, ()+C5 (AW}, 1)+ dW, (r)) J

Nowweneedtoget L(#,7,,T,) in Q"1 -measure. Rememberthat L(z, T,1,)=P,uT)/PwT,)-1)/(T,-T).
Then, recall that:

P(tT)\_PWT) (5 . .1 oo
d[Pd(t, 2)] P(i.T, 2)(de(t) sz(t))(de,Pd(t) f;,,j(t)dr).

Changing measure to o'
BT PeT)
P.tT,)) P\T,)

(Go-ggo)an], o-(co-cio) a)
ln{ 11; g ;] (Cf{, n-Cp (t))defl,,d (t)+0.5(z;g -} (I))z p
ar” 2
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% / 25 //
" 40 o 20
2 £ /
< 30 < s
& / ~ /
< 20 <
< <10
10 5
0 1 1 1 1 J 0 [ | | L L \
0 2 4 6 8 10 0 2 4 6 8 10
T,, years T,, years

Fig. 2. Convexity adjustment for quanto in-arrears Fig. 3. Convexity adjustment for quanto in-arrears

FRA with te following parameters: t = 0; o, = FRA with the following parameters: = 0; o, =

=0,= 10%; T,—T, = 0.5, 0,= 0, = 0.035; r,,(f) = 5%; = 0o,=10%; 6 =10.035; T,—7,=0.5; a= 0.7,

Af) = 10%; p[,[, =pp x=Pp =03 X0=1 (1) = 5%; Ppx =Pp x = 0;p, , =1, both rates

’ - A are identical A o
P ( ) P tT) 1er 2 T,
[k d\" 7 T T T T i
exp ~ ( (1) - (r)) ar+ [ (ch (- (t))dW ).
P (T, 2) P(1,T,) zjr CPJ CPd .[r CP,/ CP,/
So,
P(T.T) _ P,,T)

X ) )P( T.T,) XTl(t)Pd(t,Tz)

L) (1P 420 (00,9, 4 ~ 20} (V0,p, , ~0% Jdr+ [ ~C} (W), 0+
[l oaw], 0+ (s aw ), (z)).

Using Cholesky decomposition, we decompose correlated wiener processes on independent ones:
dW ‘ (t) a,dB (t)+a,dB,(t)+a,dB.(t), dW (t)=c121d]31 () +a,dB,()+a,dB,(1),

xp(o.s ['(2) gk o+ cf w2+ 28 00 P, =

dw,' (t)=a,dB (1) +a, dB (1) +a,dB.(1),

where dB, (t), dB,(t), and dB,(t) — uncorrelated Wiener processes in 0"- -measure, a, are the elements of the
covarlance matrlx square root So, expectation of lognormal random variable:

P(T.T) P(T)
E T d 1771 d ’
QT{ " } BT

where .
1=0.5[ (=263 (NG5 (+C3 (02 +283 (OC} (p,, , —C)} (02 +2C3 (N0 ,p, , ~
203 (06,0, -3 +0.5[ (L] (Da, + L] (Da, +o a, Vdr+

T
H0.5[ (¢} (D, +C} (Da,, +0 a,)2d1 +0. sj (~Cp (Da, +C} (Nay +o a, )l
Calculating this expression, we get the equation for the in-arrears quanto FRA:
__ (e, 1|
T,-T,\| P(t,T,) Xrl(t)

iqL(t,T,,T)) =

where calculation of [ is given in Appendix.

Convexity adjustment for this exotic forward contract is igCA(#,T,,T,)=iqL(,T,,T,)- L(¢,T,,T,).
Fig. 2—3 show igCA(z,T,,T,) with different parameters.

In case when both rates are from the same currency market, adjustment term is similar to the in-arrears
one, which is shown in the fig. 3.
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7. QUANTO IN-ARREARS OPTIONS

As a part of our study of quanto in-arrears contracts we also consider quanto in-arrears options on inter-
est rate — caplet and floorlet.

Definition 9. An in-arrears quanto caplet (floorlet) is a European-style call (put) option on interest rate

which is fixed at T'. Buyer of this option at # <7 with maturity T, strike K and principal amount N is of-
fered with the followmg rights at time 7}

1) pay (receive) (T, T )KN f-currency units;
2) receive (pay) (T, —T,)L(T,,T,,T,)N f-currency units, while L and K are set in d-currency units.

Formulas for option prices are given below:
aCpI@.T, T, K) = (T, =T) P, T)E,, [ (LT T T K) 17, |

ERSE
T T K)=(T,~T)P,(T)E,, | (K~ LT 1)) | 7 |

First, we find price of qCpl. We switch to d-currency — as in Section 6:

qFl(t, T

o P(TI,TJ P(T)
EQ;I[(L(TI’TPT) K) | 7] Ey {(L(T T,.T,)- K) 7 1)X(TI)IF,}Pf(t,Tl)X(t)_

=X '(E [(L(T,T,T) K) X (T)I]—“} l(t)E P(T"TI)X (T)x1 | F |-
! or n hr P(T.T,) L 11:((2:2))>1+(T2-T1)K '

-XJ(OE,, | (1+(T,-T)K) X, (T)x1 |F |
I QTI 2 1 A ;’u((;l’;l;>1+(T2_T]>K 1
d\T1072

Calculating both mathematical expectations, we come to the analytical formula of the quanto in-arrears
option price:

qCpl(t,T,,T,, K)=P, (¢, T)({Pd(t,Tl)/Pd(t,T2)} exp{0.5J, }exp{0.5(J, +J, +J,)} x
xN(JJ, —l)N(\/j ~DN(JJ, =D ~(1+(T,~T)K )exp{-0.50, } x
xexp{0.5(Q, +0, +0,)} N(,JO, ~-)N(,J0, ~)N(|JQ, —1)),

where
Jy=[" 28] O8] 0+ 02 + 2 (O] ey, , ~Ch (02 +28] (D0, ~2} (Do ,p, , — %),
J,= [ a, + 8] (Oay +0 0,041, T, = [ (L] (Da, + L) (ay, +0,a, )V dr,
J=[" (L (D + z;ﬁf (Nay, +o a,,)*dr,
0, =€} 02 =2L] (OC] 0p,, , ~20} (00, , +L} (07425} (Vo p,  +%)dr
0 = jf(—gﬁd (H)a,, +gj}/ (N, +6 a;)2dt, 0, j (¢ | (Na, +¢) h (z)a22 +0,a,)dl,
0,=[¢} (ha,,+ ) (Day, +o a )
calculations of which are given in Appendix.
We will find the floorlet price using put—call parity of European options:
qFI(t,T,,T,,K)=qCpl(1,T;,T,, K)~(T,~T))P,(t,T))(igL(,T;,T,) - K).

Fig. 4—5 show differences in quanto in arrears and standard caplet and floorlet prices with different
parameters.
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0.025 - 0.02
— + = quanto in-arrears caplet

7
—— standard caplet . 7 0.0175
P4

\ — - = quanto in-arrears floorlet

0.02 standard floorlet

' - ,° / 0.015 ‘\‘
0.015 : 0.0125 \
3 © 0.01 \ N
0.01 Pits 0.0075 \ .
0,005 4wzt / 0.005 \ ~ <
/ 0.0025 \ > <
0 | L L L L ) ~,

0

qCpl, $
\
\
\
qFl,$

LIBOR, % LIBOR, %

Fig. 4. Quanto in-arrears caplet price vs. Standard caplet Fig. 5. Quanto in-arrears floorlet price vs. Standard floorlet
price with the following parameters: 7 =0;6 , =c . =10%; price with the following parameters:  =0; 6 , =c , =10%;

A
1, -T,=05;6,=6,=0.035 r (t)=>5%; r (1) =10%; T, —-T,=05,06, =0,=0.035 r (t)=5%; r,(t)=10%;
=p Lo 4 =03 x{n=1 e Ly —osx(in=1
Ppd pr “Ppayx ~Ppry Ppapr Ppax Ppry 7>

8. CONCLUSION

We derived the formula for calculating the forward LIBOR rate in FRA when payment is settled at dif-
ferent dates. It was proved that the convexity adjustment to the vanilla forward rate should be negative when
payment takes place after forward period. Next, we studied quanto in-arrears FRA and checked, that it
equals in-arrears FRA in case when rates and principal are from the same currency market, which is shown

in the fig. 3. Finally, we briefly studied quanto in-arrears option contracts and found that their prices are
greater than those of vanilla options.

APPENDIX

Here is the calculation of the integral from the Section 6: [ =1 o +---+1,, where calculations of 7,
i=0,...,3, are given below:

exp{—apd(Tz—Tl)} exp{—aPJ(TZ—t)} 1 exp{—an(Tl—t)}

2
1,=05|(0y, /a, ) | T,~1- N 1. .
' ’ apd an aPt! an
exp{-a, (T,~T)} exp{-a, (T, +7,-20) ) 2exp{-a, (T, -T,)|
+ : - g +(GP /a, ) T —t- - +
2a, 2a, a’ ta a,

2exp{—apd (7, —t)} exp {—2an (7, _T1)} exp{—2apd (7, —t)}

+ + 5 - 5 +
a, a, a,
I G50, . —t_L exp{—aP/ (7, —t)} i exp{—al,f (T, —t)} 1 )
Por, | T, + +— +
a,a, a, a, a, a, a, +a,

exp{—(apd + an )(Tl —t)}

an +a

) . 2 2exp{—apf (7, —t)} 1
_(pr/apf) i a Jr2a

Py Py Py Py
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exp{—Zan (1, —t)} S, 1 exp{—apd (7, —t)}
- +20,p, 4 T —t——+ -
2an ‘ an an an
G, 1 exp{—apf (7, —t)}
—ZGXpr’X i[Tl_t_Z"' a, _Gg( (Tl_t) ’
S f f
) exp|-a, (T,~T,)| 2exp{—ap (T,-n} exp|-2a, (T,-T))|
1,=0.5 (Gpan/ap) T, —t- 2 + 2 + d +
‘ ‘ an an an
exp{-2a, (T, 1) 5,0, | expl-a, (-0} expl-a, (T,-T)]
+ -2a0,——| T —t—-——+ - +
2a », a,a ’, ’ a ’, 2a ’
exp{-a, (T,-0)| exp-a, (T,-T)| exp{—2apd (,-1n-a, (T, —z)} s,
+ . + - - _2alia2icX —x
2an apd+al,f an+an ,
expl-a, (T,-T)| expl-a, T,-0}) (o, Y ) 2exp|-a, (T,-1)
x| T —t- ! + 4 + —La, | | T —t——+ ! +
apa an an an an
| exp{-2a, (T~ s, | expl-a, (1, -0)
+—- . +2a,a,6, —-| T, —t——+ : +c2a2 (T, 1) |, i=1,2,3.
2a ’, 2a ’, ’, a ’, a ’

Below are the calculations of the integrals from the Section 7:

PO P o e ol I
. CXP{_an (T, —Tl)} ) eXp{_an (T,+T, —2t)} +(GP Ja. )2 It 2exp{—apd (T, _Tl)} .
2a,, 2a, R a,

Zexp{—apd (7, —t)} exp {—2an (7, —Tl)} exp{—Zan (7, —t)}

+ + - +
a, 2an 2an
2GPIIGP/ 1 exp{—al,f (7, —t)} 1 exp{—al,f (T, —t)} 1
+ Ppp | T —1——+ +—+ + -
a,a, a, a, a, a, a, +a,

1
a, +an ’, an 2a,

_exp{—(apd+apf)(7]—t)} _(GP o )Z(T _t_i+2exp{_apf(ﬂ_t)}+ |

exp{—Za (T —t)} c exp{—a (T —t)}
- LAt _ZGXpP Xi Tl_t_L—'_ v _Gi((Tl_t) >
2aP/ - aP/ aP./' aP/
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2
G, Zexp{—ap (7, —Tl)} Zexp{—ap (7, —t)} exp{—ZaP (7, —Tl)}
J=|—%a,||T -1 d + L + < -
an apd an 2an
exp{—2apd(T2—t)} 2a.a, 1 exp{—apf(Tl—t)} exp{—apd(Tz—Tl)}
- - 6,0, |I,-t—+ - +
2an a},da},f d f an a},f an
exp-a, (T, -0} exp|-a, (T,~T)} ew|-a, (T,~n-a, (T,-n|
+ + - -
a, an+an an+an
C, exp{—aP (7, —Tl)} exp{—aP (7, —t)}
-2a.a.06,—L| T —t—+ 4 + 4 +
Pd an an
2
o, 2exp{—a (T —t)} exp{—2a (T —t)}
+ a, —L Tl—t—i+ ] — il +
apf an an 2an 2an
G, 1 exp{—ap (T, —t)}
+2a,a,6,—L| T, ~t-—+ ! +(c,a, )T, -1), i=1,23.
an an an
2
c 2exp{—a (T—t)} exp{—2a (T —t)}
Q0= i ]’;_z‘_i+ Fa ! + 1 — Pt —
an an apd 2an 2an
o, o1 ol o) el Gonf
PP 1
a'f anan an an a, a, an+an
exp|~(a, +a, )T, -1 5, | ew|-a, (1)
- a -20,p, —L| T —t——+ d +
an+an a a, a, a,
2
s, 2exp{-a (T—z)} exp{—Za (T —t)}
+ =L T]—t—i+ b +21 - 2Pf : +
a a a a a
Pf Pf Pf Pf Pf
C, 1 exp{—aP (1, —t)}
+26,p, ,—L| T ~t-——+ ! +0%(T -1).
A an an an
2
_ _ — - 2a.a,6, G
0- auGPd Tl—t—i+2exp{ apd(Tl t)}+ 1 _exp{ 2apd(T] t)} TP, Pf><
an an apd 2an 2an anan

| exp{—aF (T, —t)} 1 exp{—aP (T, —t)} | exp{—(apd +a, (T, —t)}
| T —t——+ ’ S : ; - i
apf an apd apd an+an apd+apf
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2
2a.a.6,6 exp{—a (T —t)} a,c 2exp{—a (T, —t)}
i3 1 2P 2 P
TPy A P\ N ' T-1-2 4 1 N
a, a, a, an an a,,
- - 2a,a,.6,0 —ap (I=1)
1 exp{ 2a, (T, t)} 2%5:9x%p, 1 ex bt
— ! + ! T—t——+p{}—f +(o.,a ) (T —1), i=1,23.
2a,, 2a, a, : a, a, ol
) 7 ) s s
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Aemopbl 8bipadicarom Uckpertion 61a200apHOCMb AHOHUMHBIM PeYeH3eHMam 3a YeHHble 3aMe4aHusl paH-
HeMy eapuanmy cmamol.

An"otammsa. B maHHOI cTaThbe MBI paCCMOTPEIN OLIEHKY (hOpBapAHBIX KOHTPAKTOB, KOTOPHIC SIBJISI-
FOTCS TOMYJISIPHBIMU (DMHAHCOBBIMU MHCTPYMEHTAMM JUISI TTIOKYIIKY WU MPOAAXU KAKUX-JIU00 aKTH-
BOB B 3a[JaHHbI/i MOMEHT BPEMEHU B OyIyllIeM 10 YKa3aHHOK (DUKCUPOBAHHOM 1IeHe. YCIIOBUS TaKUX
KOHTPAKTOB MOTYT YCTaHABJIMBATbCS B 3aBUCHMOCTH OT IMOTPEOHOCTEH TTOKyIaTesiei iy poaaBIIOB,
a TOPTOBJISI UMM MIPOUCXOAUT Ha BHEOUPKEBOM PBIHKE. DTO OTIMYAET UX OT (PhIOUEPCOB, KOTOPHIE
TOPIYIOTCSI Ha OUp3Ke Ha CTAaHAAPTU3MPOBAHHBIX YCI0BUSX. DOKYCOM HAIEro UCCISIOBAHUS SIBJISI-
10TCs1 (hOpBapIHbIC KOHTPAKTHI Ha MPOLICHTHYIO CTAaBKY C BBHITLJIATON B MOMEHT (hUKCAIIUM TLJIaBal0-
et craBku (in-arrears forward rate agreement, uinu in-arrears FRA). OHM omim4atoTcst OT 0OBIYHBIX
(bopBapIHBIX KOHTPAKTOB HA CTABKY TEM, UTO IIaBalollasl IIPOLIEHTHASI CTaBKA BHIILJIAYMBAETCS B MO-
MEHT (pukcauuu. Mbl pacCuMTa N BhINYKIIYIO TTONPABKY K IUIaBaoIleil MPOLIEHTHOM CTaBKe, BO3HU-
KalolIyIo B TAKMX KOHTPaKTaX, MPU Pa3aInyHbIX KOHGUTYpALUsIX BpEMEHU BbITUIAT B ONHO(MAKTOPHOI
croxactTuyeckoit Mmonenu Bacuueka. C moMolbio MpUHLIKMIIA 6€3apOUTPaXKHOCTU MbI TTOKa3aiu, YTO
rnompaBKa OyIeT HEeOTPULATEILHOM B CiIydae, KOIIa BhIILIATHI IIPOMCXOIST 10 KOHIIA IIEPUOIa HauKC-
JIEHUSI, U OTPULIATEIbHOI B ClIydyae, KOIIa BBIILIAThI ITPOUCXOAAT MMociie. Mbl TaKKe U3YyYWIIM in-arrears
(bopBapaHbIE M OMIIMOHHBIC KOHTPAKTBI, B KOTOPBIX CTaBKA M1 HOMUHAJI, Ha KOTOPBII HAYMCIISIETCST 3Ta
CTaBKa, OTHOCSTCSI K pa3HBbIM BajoTaMm quanto in-arrears FRA n quanto in-arrears onuunoHsl). Mbl
ybenmmimch, 4To quanto in-arrears FRA paBen o0praHoMy in-arrears FRA B cirydae, Korma BaioTHI CO-
BIIaJAIOT, U YTO quanto in-arrears OIIIMOHBI JOPOXKE OOBIYHBIX.

Korouesbie ciioBa: BbINyKjas morpaBKa; (popBapaHblii KOHTPAKT Ha MpolleHTHY0 cTaBky (FRA);
Mozenb Bacuyeka; mpuHIMN 6e3apOouTpaXkHOCTH; (hOpBAPAHBINT KOHTPAKT Ha MPOILIEHTHYIO CTaBKY
C MTHOBEHHOI1 BbIMIaToi (in-arrears FRA); kBaHTO-(opBapaHbIii KOHTPAKT Ha MPOLIEHTHYIO CTaBKY
¢ MIHOBEHHOI1 BbiTutatoii (quanto in-arrears FRA); LIBOR; MOSPRIME, dopBapnHblii KOHTpaKT Ha
MPOLEHTHYIO CTaBKy C MTHOBEHHOI BbiTuiaToil (in-arrears FRA / iFRA).
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