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Abstract. In the article, the nonstationarity of economic cycles is studied using their one-dimensional
model of the “investment — income” type. The model interprets the cycle as random oscillations of
an elastic system induced by exogenous (investment fluctuations) and endogenous (system properties)
causes. This approach provided a quantitative description of economic cycles through the parameters of
the elastic system — its natural frequency and damping factor. The nonstationarity of cycles is analyzed
by the time trend of their natural frequencies. Such an analysis was performed for the period 1960—2020
by the amplitude spectra of US GDP deviations. Its results showed a simultaneous and steady decrease
in the duration of the three considered cycles. This means that the results of observing these cycles do
not have the ergodic property. Therefore, the adaptation of the cycle model to empirical data is possible
for a time interval in which it can be considered pseudo-stationary.
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1. INTRODUCTION

In the theory of stochastic dynamics of economic cycles (Karmalita, 2020), the model of the cycle Z(¢)
with period 7j, is a second-order ordinary differential equation:

E(1)+2h=(1)+(2nf,)?E(r) = E(1). (1)

The above model describes random oscillations induced by a linear elastic system with natural frequency
Jo=1/T, and damping factor # under the white noise E(f) (Bolotin, 1984). Equation (1) made it possible to
move from modeling the results of observations of economic cycles to modeling their mechanism. Accord-
ing to model (1), income oscillations Z(7) are due to both investment fluctuations £(7) and properties of an

elastic system. Note that equation (1) not only explains the cycle mechanism, but also provides its quanti-
tative description in terms of the parameters 4 and f;.

Technological and managerial progress in the economy must lead to a change in the characteristics of
economic systems, that is, a change in cycle parameters. We start by looking at the damping factor 2 which
characterizes the efficiency of the elastic system. In the theory under consideration, the root-mean-square
(rms) gain was proposed as an indicator of the economic system’s efficiency in the form of the following
ratio: K_= o, /o,. Here o¢ and o, are rms values of income (output) and investment (input) functions,
respectively. Since both K; and / are related to the efficiency of the system under consideration, there is
a quantitative relationship between them. With a discrete representation of the income by a dimensionless
time interval (Ar = 1), the latter has the form shown in Fig. 1 (Karmalita, 2020).

Consequently, the evolutionary increase in the efficiency of economic systems is a priory accompanied
by a decrease in the value of 4.

Within the framework of the above theory, the natural frequency f, of the cycle correlates with the in-
clusive wealth W, of corresponding economic system:
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Here W, is the monetary value of all system as-
sets (production, labour, inventory, and finance),
and w, is the dynamic factor that characterizes the
system’s ability to withstand investment fluctuations
and eliminate their consequences. The evolutionary
development is accompanied by an increase in the
inclusive wealth of systems, which is illustrated in
Fig. 2 (Yamaguchi, Islam, Managi, 2019).

A viewed increase in the total wealth of econom-
ic systems, as follows from (2), should lead to a de-
crease in natural frequency f. Since the dimension
of the coefficient w, is equal to $/year2, it can be in-
terpreted as the acceleration with which the inclu-
sive wealth is redistributed among its assets when the
structure of W, changes under the influence of in-
vestment fluctuations. Conceptually, w, must grow
due to evolutionary progress in the development
of methods and tools for transforming one type of
wealth asset into another. Thus, both terms of ex-
pression (2) grow, and the parameter f;, will change
over time. But the nature of this change (growth—
decrease) will be determined by the dominance of
the change in the numerator or denominator of ex-
pression (2). The purpose of this article is a quan-
titative analysis of the actual change in the natural
frequency of known economic cycles. To do this, it
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Fig. 2. Evolutionary growth of W (per capita)

is necessary to start with the choice of informative indicators, and then evaluate their trends over time us-

ing the available econometric data.

2. FORMALIZATION OF THE PROBLEM

The random nature of investments inherent in a market economy made it possible in (Karmalita, 2020)
to formally represent them as the sum of a deterministic trend and stochastic fluctuations E(7). Such a pre-
sentation correlates to Cooley and Prescott’s postulate (Cooley, Prescott, 1995) of the need to consider
economic growth and fluctuations together. Accordingly, the income function X(#) can also be written as

the sum of two terms: X(r) = L(¢) + 0X(¢), where
L(?) is the long-term trend in income due to the in-
vestment trend M(7), and the deviations dX(¢) are
caused by investment fluctuations E(7). Deviations
0X(7) include all known economic cycles (Kondra-
tiev, Kuznets, Juglar, and Kitchin) as well as other
possible income fluctuations, that is:

In the time domain, the relationship between in-
vestment fluctuations £(7) and a given income cycle
Z(#) with natural frequency f; is described by equa-
tion (1). The properties of the linear elastic sys-
tem in the frequency domain are described by its
amplitude-frequency characteristics A(f) (Fig. 3).

A(f) determines the ratio of the amplitudes of the
input (investment) and output (income) harmonics.
In accordance with the shape of the characteristic
A(f), the values of random oscillations Z(7) are deter-
mined mainly by harmonics in the frequency band
J1 =07/ < f<f, = 1.4 f,. In other words, economic
cycles are narrow-band random processes.
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The peak of A(f) corresponds to the frequency
AOL f,={f*=(h/2m)? , which is called the damping-
corrected natural frequency of the system. The pa-
rameter 4 determines the width of band Af, .. of the

: characteristic A(f) at points where A(f) = 0.707A(f},),
| as shown in Fig. 3. The relationship between Af,
|
|

20,

0.707

and the damping factor /4 is as follows (Pain, 2005):

0 0.5 ’-(; h= TAf, ;- 3)

Since the amplitude spectrum of the output of

Fig. 4. Amplitude spectrum of white noise a linear dynamic system is equal to the product of

its amplitude-frequency characteristics and the am-

plitude spectrum of the input, then A_(f) = A(f)A,(f). Note, that white noise has a uniform spectrum
(Fig. 4). Here \/D7E =0 , is the root-mean-square value of investment fluctuations, and 0 is the relative fre-
quency corresponding to the dimensionless time sampling interval Az = 1. Therefore, Az(f) is directly pro-
portional to the amplitude frequency characteristics of the system due to the uniformity of A(f). Therefore,

estimates of ©, =,/05 — (4 ¢ /2m)* can be determined from the amplitude spectrum of oscillations Z(7).

3. ESTIMATING THE CYCLE PARAMETERS

In econometric studies, to quantify the income function X(7) the gross domestic product (GDP), herein-
after G(¢), is usually used. First, we need to assess the suitability of GDP estimates for evaluating the values
of the parameters f; and /4. Recall that the value of GDP is a monetary estimate of manufactured goods and
provisioned services for a certain period AT. The income function can be represented as the sum of its trend
L(1) and deviations 8X(7). Therefore, G(7),is mathematically described in the following form:

G(t)= | X(t)dt=[k(v) X (t-7)dr

k(2 Le—)dr+ [k ()X (1~ 1)dn=G, (1) +5(). 4

In other words, the GDP function can be interpreted as the result of measurements of the income function
using an estimator the inertial properties of which are described by the impulse response (/R) function k(T):

I, 0<t<AT;
k(t)=
0, t<0;t>AT.
Applying the linear operator (4) to a homogeneous version of equation (1) leads it to the following form:

& (t) +2hg_ (t) + (2rcf0)2 8 (t) =0. Hence it follows that the parameters £ and / also characterize the proper-
ties of the corresponding GDP estimates.

In the frequency domain, equation (4) transforms into the multiplication of the corresponding Fourier im-
ages: G(f) =G, (f)+ g(f) = H(f)L(f)+ H(f)F)X(f). The operator H(f), being the Fourier transform of k(7),
has the following form (Pavleino, Romadanov, 2007):

H(f)= [k(r)ers dr =

A, A

AT = AT sinc(nATf )e ™0 = 4 (f) ),

Here A;(f) and ®,(f) are the amplitude- and phase-
frequency characteristics of the estimator, and

. L fZO,
Smc(nATf):{(SinnAW)/(TEATf)’ f#0.

I

| |

| | The amplitude-frequency characteristics A;(f) is
l I shown in Fig. 5.

From its form it follows that the estimator has a dif-
ferent effect on the harmonics of the cycle with fre-
quency fy = 1/T;, which are concentrated in frequen-
Fig. 5. The frequency characteristic of the estimator cy band f,..., f». Moreover, this effect intensifies with

0 f f  1/AT 2AT 3/AT ;f
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Estimation procedure
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Fig. 6. Diagram of estimating GDP

increasing f; due to growing the slope of 4;(f). Let us estimate this effect using the example of the Kitchin cycle,
which has the highest frequency. In the case of using quarterly GDP estimates, the value A = AT = 0.25 years.

For such an illustration, we will take the estimate Tk; ~ 3.6 years (Karmalita, 2023). Consequently, the
natural frequency of the Kitchin cycle is fx; = 1/T; = 0.28 cycle/year, the values f, =0.7/ = 0.19 and
f,=14f,=039. In this case, the AF characteristics of the estimator has values
A, (fl)z sin(0.2x0.25m) /(0.2 0.251)= 0.996, A;(fx;) ~ 0.991, and A(f,) ~ 0.984. The difference between

the values of 4,(f}) and 4,(f;) from A4,(fk;) does not exceed +£0.7%. Given the steepness of characteristic A(f)
(see Fig. 3), we can assert that the peaks of the real spectrum of Kitchin cycle and the spectrum of GDP
will coincide. Therefore, the values f}, for cycles of longer duration will certainly be defined as the frequency
coordinates of their peaks in the image g(f).

Let us turn to the procedure for estimating GDP, conditionally presented in Fig. 6. The diagram presents
the error Z(f) describing the actual properties of the estimation procedure. This error arises, for instance,
due to unreliable statistical data, its incompleteness, and the performer’s skill. Therefore, the available data
related to the values of GDP are the estimates G(7) determined as: G(¢)=G(1)+ Z(1)=G, (t)+ &(¢). Here
and further in the text, the sign ”~” denotes a quantitative estimate of the noted variable.

The function Z(f) (measurement noise) is usually modeled as “white” noise, which does not affect the position
of the peak of the spectrum A=(f) on the frequency axis. However, the sharpness of spectrum A(f), presented in
Fig. 3, makes the white noise assumption not strict. Conceptually, the transition to correlated measurement noise
leads to the appearance of local gradients in the uniform spectrum of white noise. In order for noise Z(7) to influ-
ence the position of the peak of curve A=(f), the gradient of the noise spectrum must dominate in the vicinity (less
than Af, . ) of the value 6,. Moreover, the shift of the spectrum peak along the frequency axis leads to a violation
of the symmetry of spectrum A=(f), which is detected both numerically and visually.

Very often in econometric quarterly estimates of GDP are used. It should be noted that they are character-
ized by a non-equidistance sampling interval due to the different duration of quarters during the year. For the first
quarter, Az, is 90 or 91 (leap year) days, Af, = 91, At; = 92, and Az, = 92. Such a change in the sampling interval
leads to additional randomization of income oscillations Z(7). As a result, the slope of the peak of the amplitude
spectrum becomes flatter, which leads to an increase in the estimate of 4. Obviously the cycle with the highest
natural frequency will have the largest bias in the damping factor estimate. Numeric simulations show that above
randomizing a harmonic (% = 0) with the Kitchin cycle
frequency leads to the estimate 4 < 0.002. Thisbiascan  G), 7%
be considered insignificant for econometric studies. As A
for the position of the cycle peak on the frequency axis,
it does not change. 20

Thus, the choice of estimates of the parameter
0, as a quantitative measure of the nonstationarity
of cycles seems justified. In this case, the research 10
method will be Fourier analysis, and the empirical
data will be quarterly estimates of USA GDP.

~Y

0 L -
4. RESEARCH RESULTS 1960 2020

Estimates of the damping-corrected natural fre- Fig. 7. Real GDP estimates of the US economy

quencies of the cycles were determined using €Co-  Source: Federal Reserve Economic Data (2023) (https://fred.
nomic data for the period 1960—2020 (Fig. 7). stlouisfed.org).
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Fig. 10. Trends of natural frequencies of economic cycles

The sampling interval was Af = (.25 years, so the number of samples » = 240. Fourier analysis must be
applied to GDP deviations g, = g(t )— g(At l) which should be separated from G using the trend G, . Since
the latter is unknown, its estimates G ,;, were determined by the least squares method (Brandt, 2014). After
that estimates of GDP deviations were calculated (Fig. 8) as g =G, -G, relative to the regression

= 0.365i% ~0.535i +564 (i=0, 239).

The amplitude spectrum of the deviations was determined through the Fourier transform (Cho, 2018).
Since we used the dimensionless sampling interval At = 1, the results will be presented in terms of relative
frequency 0 < 0 <0.5. The amplitude frequency spectrum Ag~ (6) of GDP deviations is shown in Fig. 9.

There is only one period of Kondratiev wave in an interval of 60 years, so for this cycle it was possible to
unambiguously determine the relative frequency 0, ~ 0.0043 and period 7, = A7 /6, =0.25/0.0043 = 58
years. The frequency values were determined with a resolution A8 =~ 0.00024. An estimate of the Kondratiev
damping factor can be found as A, =7A6 (0.707 /0.25)=0.058.

The observed stratification of the Kuznets swing and the Kitchin cycle, as well as the deformation of the
Juglar spectrum, is indirect indicators’ package of the change in their natural frequencies over time. To de-
termine a stable trend in a time series, we need to have at least three values, so the estimates of 6, were cal-
culated on a time base of 20 years. This approach was applied to fragments of the initial data G, , using for

the period 1960—1979 regression GLi=0.367i> —3.85i + 610, for 1980—1999—-GLi = 0.359i2 +57.8i + 2843,
and for 2000-2019—-GLi =0.391:> +108.8/ + 10 166. The results of the research are shown in Fig. 10.

The figure above shows a simultaneous steady increase (decrease) in the frequencies (durations) of the
three considered cycles. Estimates of the relative frequencies (durations in years) of cycles increased (de-
creased) for:
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*  Kuznets swing — from 0.018 to 0.02 (13.7 - 12.3),
« Juglar cycle — from 0.034 to 0.038 (7.3 ~ 6.6),
» Kitchin cycle — from 0.048 to 0.067 (5.3~ 3.7).

The increase of the natural frequencies of the cycles is explained by the dominant growth of the dynamic
factor w,. Recall that w, were interpreted as the acceleration at which inclusive wealth is redistributed among
its assets. Its growth is due to significant progress in the development of methods and tools for converting
one type of asset of the economic system into another.

5. CONCLUSIONS

The time trends of natural frequencies of economic cycles presented in empirical data of a market econ-
omy are studied. Fourier analysis of deviations of US GDP showed a simultaneous steady decrease in the
duration of the three considered cycles over time. Thus, the hypothesis expressed in (Karmalita, 2020) about
the evolutionary change in the duration and intensity of economic cycles is confirmed. Therefore, the eco-
nomic systems are, in principle, nonstationary, and the results of observing their behavior do not have the
property of ergodicity.

As a rule, a probabilistic description of nonstationary random processes is possible only on a set of their
realizations. In fact, economic data, being essentially a chronicle, is available in a single implementation.
So, estimates of cycle parameters can be evaluated on pseudo-stationary fragments of the cycle trajectory,
in which evolutionary changes in parameters do not exceed the statistical uncertainty of their estimates. An
example of selecting such fragments by testing the hypothesis about the homogeneity of cycle correlations
using statistical inference methods exists (Karmalita, 2020).
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Annoranusa. CTaThsl TTOCBSIIEHA UCCISTOBAHUIO HECTALIMOHAPHOCTH 9KOHOMMYECKHUX ILIUKIIOB, OIM-
ChIBAEMBIX OTHOMEPHOM MOMENbIO, BXOI KOTOPOI — «MHBECTULIMM», & BBIXOI — «I0XOAbl». LIk pac-
CMaTpUBAETCs KakK ClydaliHble KOJeOaHUs YIIPYTroil CUCTeMbl, BbI3BaHHBIE BHEIITHUMU (KoJieOaHUsT
WHBECTUIINIA) M BHYTPEHHUMH (CBOICTBA cUCTeMBI) (hakTopaMu. Takoit TTOAX0M TTO3BOJIMI TaTh KOJIH-
YeCTBEHHOE OIMCaHNe SKOHOMUUYECKUX LIMKJIOB Yepe3 MmapaMeTphbl YIIPYToil CUCTEMBI: COOCTBEHHYIO
4acToTy U KoadduumeHt 3aryxanus. HecralimoHapHOCTb IMKJIOB OlIEHHMBaJIaCh MO MOBEAEHUIO COO-
CTBEHHBIX YaCTOT BO BpeMeHU. B KauecTBe sMmnpuueckux aaHHbIX ObL1 BeIOpan BBIT CIIIA 3a me-
puon 1960—2020 TT. AMIUTMTYIHBIE CITEKTPHI IIUKJIOB BEIYUCIISTIUCH METOIOM TUCKPETHOTO TIpeodpa-
3oBaHust Dypbe pazHOCTH Mexay 3HaueHussMu BBII u ero kBanpaTuaHOTO TpeHAA, B3STHIX C IIIarOM
B OIIMH KBapTajl. Pe3ynbTaThl CeKTpabHOTO aHa/IM3a MoKa3ajld OMHOBPEMEHHOE U YCTOMUMBOE CHU-
JKEHUE MPOAOIKUTEIBHOCTH TPEX pacCMaTpUBaEMBbIX IIMKJIOB, HA OCHOBAHUM Yero ObUI clielaH BbIBOII
0 HEIPTOMUIHOCTH SKOHOMUYECKUX HUKIIOB. [ToaToMy aganTaiust MOIe N IUKIa K OMITUPUISCKUM
JAHHBIM BO3MOXHA JIMIIb HA BPEMEHHBIX MHTEPBaJIax, Il € MOXKHO CUMTATh TICEBIOCTAIlMOHAPHOA.
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