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ВВЕДЕНИЕ

Среди множества задач повышения точности экономического прогнозирования одной из важ-
нейших является выбор лучшей прогнозной модели из множества возможных. Особенно часто эта 
проблема возникает в условиях использования моделей авторегрессии для целей краткосрочного 
прогнозирования, поскольку статистический стационарный ряд может быть описан множеством 
разных моделей: AR(p), MA(q), ARIMA(p, d, q), NARIMA(p, d, q), SARIMA(p, d, q) и т. д.

Прогнозная практика показала, что довольно часто при выборе лучшей прогнозной модели 
с возрастанием ее сложности ошибка прогноза сначала уменьшается, затем достигает своего ми-
нимального значения, после чего начинает увеличиваться. Модель, у которой ошибка прогноза 
минимальна, называют моделью оптимальной сложности. Для поиска модели оптимальной слож-
ности были разработаны методы, каждый из которых имеет свои недостатки и преимущества. От-
дать предпочтение какому-то одному методу сложно именно из-за наличия недостатков во всех 
предложенных методах. Поэтому часто встречаются ситуации, когда, например, при использова-
нии информационных критериев для выбора порядка авторегрессии ученые вычисляют не один 
критерий, а сразу несколько и отдают предпочтение той модели, у которой информационные кри-
терии являются менее противоречивыми (Shittu, 2009; Zhang, Yang, Ding, 2023). Но практика пока-
зывает, что выбранные с помощью этого подхода прогнозные модели не всегда указывают на дей-
ствительно лучшую прогнозную модель.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-28-01213, 
https://rscf.ru/project/23-28-01213/).
Аннотация. Любая теория базируется на некотором аксиоматическом ядре, в которое включа-
ются аксиомы и постулаты. К последним относят выводы и результаты других теорий или раз-
делов наук, которые в данной теории принимаются без доказательства. К таким постулатам, 
принятым в современном экономическом прогнозировании, относят информационные крите-
рии, с помощью которых выбирают лучшую прогнозную модель из множества конкурирующих. 
Чаще всего прогнозисты используют два основных критерия — Акаике и Шварца. В статье 
на примере краткосрочного прогнозирования 120 различных рядов данных с помощью авто-
регрессий AR(p) показывается, что на практике этот инструмент работает не так хорошо, как 
ожидается. Альтернативой информационным критериям может выступить критерий, основан-
ный на байесовской проверке гипотез, излагаемый в статье. Этот критерий включает инфор-
мацию о правдоподобии описания априорных и апостериорных данных, перекрестный учет 
которых соответствует байесовскому выбору. Сравнительный анализ применения информаци-
онных критериев и нового критерия, результаты которого приведены в статье, свидетельствует 
в пользу последнего критерия, который и рекомендуется применять на практике.
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Поэтому имеется необходимость вновь вернуться к задаче выбора прогнозной модели, изучить 
суть основных методов выбора модели оптимальной сложности и определить тот метод выбора 
прогнозной модели, который будет давать лучшие результаты.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

1. Перекрестная валидация
В самом начале использования статистических моделей для аппроксимации и прогнозирования 

моделируемых процессов исследователи применяли простую процедуру — выбирали модель, у ко-
торой дисперсия ошибки аппроксимации минимальна, предполагая, что лучшая в аппроксимации 
модель будет лучшей и в прогнозировании. Это предположение было верно для обратимых про-
цессов, но применительно к необратимым процессам оно редко когда подтверждалось — лучшая 
в аппроксимации модель не всегда хорошо описывала будущее развитие ряда.

На смену этому подходу пришло осознание того, что лучшей будет модель, которая хорошо себя 
ведет не только на прошлых данных, но и на данных, на которых она еще не обучалась — на прове-
рочном множестве. Этот подход реализовывался так: имеющиеся данные делились на две части — 
обучающую (первая часть ряда) и проверочную (вторая часть ряда). На обучающем множестве 
строилась модель, с помощью которой на проверочном множестве выполнялись расчеты — по сути 
прогнозы — и прогнозные значения сравнивались с фактическими значениями. Из конкуриру-
ющих друг с другом моделей выбиралась та, которая лучше всего вела себя на проверочном мно-
жестве. Эта процедура и сегодня является довольно популярной при выборе прогнозной модели 
(Degiannakis et al., 2022; Gilliand, 2020; Knuppel, 2014; Tallman, Zaman, 2017). Разделение имею-
щихся данных на два множества вызывает вопрос, как определить размер обучающей и прове-
рочной выборок. Теоретически сложно обосновать, сколько данных следует отнести к обучающей 
выборке, а сколько — к проверочному множеству. Обычно деление осуществлялось в пропорции 
2/3 к 1/3, но теоретического обоснования такого деления нет, а ссылка на обычай, на то, что так 
принято, является слабым аргументом.

Развитием данного подхода стал метод перекрестной валидации (Berrar, 2019; Gold, 2020; 
Emmert-Streib et al., 2024), активное применение которого стало возможным благодаря широкой 
цифровизации науки. Метод предполагает предварительное разбиение данных на k частей. Затем 
на k‑1 частях, выбранных случайным образом, проводится обучение конкурирующих моделей. По-
сле этого на оставшейся части данных осуществляется проверка, насколько хорошо каждая из кон-
курирующих моделей описывает эти, апостериорные для них данные. Для большей уверенности 
в выборе лучшей модели эта процедура повторяется k раз, в результате чего каждая из k частей 
имеющихся статистических данных используется для проверки имеющихся моделей. Выбирается 
та модель, которая на всех проверочных множествах показала себя наилучшим образом. Не ясно 
в этом методе — каким должен быть каждый из k отрезков? Тем не менее этот метод хорошо себя 
зарекомендовал при моделировании и прогнозировании обратимых процессов. Но большая часть 
экономической динамики представляет собой результат необратимых эволюционирующих во вре-
мени процессов (Светуньков И., Светуньков С., 2024), когда меняются не только его количествен-
ные, но и качественные характеристики — состав и структура составляющих его элементов и даже 
степень и направление взаимосвязи между ними.

В этом случае для прогнозирования следует выбирать не ту модель, которая наилучшим обра-
зом повела себя в прошлом, а ту, которая учла изменения в тенденциях последних наблюдений 
(если они, конечно, есть). Поэтому последние наблюдения ряда важнее для целей прогнозирова-
ния, нежели данные, убывающие в прошлое. И в этом случае кросс-валидация не может быть эф-
фективно использована для выбора лучшей прогнозной экономической модели.

2. Свойства основных информационных критериев
В 1973 г. Хиротогу Акаике опубликовал работу о выборе лучшей модели из множества возмож-

ных (Akaike, 1973), и критерий, который он использовал, получил название «информационный». 
Это название было придано критерию Акаике и всем последующим критерия этого типа, посколь-
ку они учитывают две составляющие: дисперсию и число коэффициентов модели, которое косвен-
но характеризует сложность модели. Таким образом, в критерии Акаике сочетаются: 1) минимум 
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дисперсии ошибки аппроксимации, 2) использование модели минимальной сложности. В резуль-
тате эти информационные критерии решают задачу выбора модели оптимальной сложности.

Акаике предложил универсальный метод выбора лучшей i-модели авторегрессии с коэффици-
ентами θ из множества возможных. Для его обоснования он предложил использовать критерий, 
который выводится из расстояния (расхождения) Кульбака–Лейблера. Это расстояние выступает 
мерой удаленности друг от друга двух вероятностных распределений, определенных на одном про-
странстве событий.

Если обозначить через f(x | θ) некоторую функцию распределения с параметрами θ, то расстоя-
ние Кульбака–Лейблера можно записать (Akaike, 1973, p. 204):

			      W E f x f x f x dx( , ) ( | )log ( | ) / ( | ) .θ θ θ θ θ= ( )∫  	 (1)
Минимизируя это расстояние, можно найти модель с лучшими параметрами. Акаике показал, что 
для оценки этого расстояния следует использовать логарифмическую функцию правдоподобия:

			        W
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где k — число коэффициентов модели. Для нахождения максимума этой функции Акаике ис-
пользовал ее разложение в многочлен Тейлора, где суммирование ведется по всем наблюдениям 
i и по числу параметров k.

Вычисляя первые производные данной функции и приравнивая их нулю, Акаике получил урав-
нение, состоящее из нескольких слагаемых. Многие из них относительно малы или ими можно 
пренебречь, поскольку они не влияют на результат. В итоге для решения задачи выбора модели 
оптимальной сложности достаточно вычислить для каждой из модели с различным количеством k 
коэффициентов θ значение суммы
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и выбрать ту модель, у которой эта сумма будет максимальной, поскольку она будет соответство-
вать минимальному расстоянию Кульбака–Лейблера.

В 1974 г. Акаике опубликовал другую статью, в которой критерию выбора модели он дал назва-
ние AIC (информационный критерий Акаике), а формулу представил в удобном для практическо-
го применения виде для моделей авторегрессии в случае нормального распределения вероятности 
(Akaike, 1974, р. 720):

			   AIC N p q= + +log ( ),σ2 2  или AIC p q N= + +log ( ) / .σ2 2 	 (4)
Здесь N — число наблюдений, σ2 — дисперсия модели, p — порядок авторегрессии AR(p), а q — по-
рядок модели MA(q).

В 1978 г. израильский ученый Гидеон Шварц изложил другой подход к выбору лучшей модели 
из многих. Для обоснования критерия выбора лучшей модели он использовал семейство Купма-
на–Дармуа. Это семейство представляет собой некоторую обобщенную экспоненциальную фор-
му, в которую включаются все распределения вероятностей, у которых есть экспонента. Функция 
плотности вероятности этого семейства имеет вид:

				    f x h x T x A( | ) ( )exp ( ) ( ) ( ) .θ η θ θ= +( )  	 (5)
Для каждого распределения, входящего в это общее семейство, функции h(x), η(θ), T(x) и A(θ) от-
личны друг от друга.

Семейство экспоненциальных распределений Купмана–Дармуа удобно, поскольку, работая 
с общей моделью, всегда можно получить статистические характеристики для любого распреде-
ления из этого семейства.

В работе Шварца семейство Купмана–Дармуа применительно к задаче выбора наилучшей мо-
дели методом максимального правдоподобия представлено так (Schwarz, 1978, р. 462):

				    log ( | ) ( , ) exp ( ) ( ) .f x f x y x bi k
i

N

θ θ θ θ
=
∑ = −( )

1

	 (6)

Формально (6) можно называть байесовским, поскольку здесь априорное распределение умножа-
ется на функцию правдоподобия (что и сделал Шварц — с помощью формулы Байеса), которая 
эквивалентна выбору j, максимизируется функция правдоподобия (Schwarz, 1978, р. 462):

ˆ

ˆ

ˆ

ˆ

ˆ
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			      S Y n j Y b n dj j( , , ) log exp ( ( )) ( ).= −( )∫α θ θ µ θ 	 (7)
Здесь αj — априорная вероятность того, что модель j является правдоподобной.

Решая поставленную задачу, Шварц и приходит к выводу о том, что лучшей будет модель, для 
которой максимальной является (Schwarz, 1978, р. 461):

				       log ( ,..., ) , log .M X X k nj n j1 0 5− 	 (8)
Здесь log Mj(X1, …, Xn) — логарифмическая функция правдоподобия, j — номер коэффициента.

Если выбирается лучшая модель авторегрессии при нормальном распределении вероятности, 
то следует минимизировать такую функцию дисперсии и числа коэффициентов:

				    BIC SIC p q N N= = + +( )log ( )ln / .σ2 	 (9)
Критерий (9) получил название информационный критерий Шварца (SIC), или байесовский информа-
ционный критерий (BIC). В этом критерии апостериорные данные, наличие которых предполагает 
современный байесовский подход, не используются.

Сегодня в распоряжении прогнозиста имеются и другие информационные критерии, развива-
ющие или уточняющие первые два критерия (критерий Мэллоу, критерий Ханнана–Куана и др.). 
Это многообразие зачастую смущает прогнозистов и они предпочитают использовать либо AIC, 
либо BIC. Но какому критерию следует отдать предпочтение?

Некоторые исследователи считают, что эти два критерия дают почти всегда одинаковые ре-
зультаты (Аистов, Николаева, 2019; Knafl, Ding, 2016), но чаще всего ученые избегают давать пря-
мой ответ на вопрос о том, какая модель лучше, указывая на различие этих моделей. Встречают-
ся, правда, и некоторые сравнительные суждения о статистических свойствах оценок критериев, 
например, о том что критерий Акаике дает несостоятельные оценки и асимптотически переоце-
нивает истинное значение k, тогда как оценки, полученные по критерию Шварца, являются со-
стоятельными, но при этом оценки критерия Акаике являются более эффективными (Тимофеев, 
Фаддеенков, Щеколдин, 2015, с. 189; Shaikh, Irfan Ali, Cárdenas-Barrón, 2021, р. 81). Но из этого 
не следует вывода о том, какому же критерию отдать предпочтение.

Рассмотрим, как эти критерии ведут себя в прогнозной практике применительно к моделям ав-
торегрессии. Для этого воспользуемся базой данных, созданной под научным руководством про-
фесора С. Макридакиса и находящейся в открытом доступе для всех прогнозистов, (Makridakis, 
Hibon, 2000). Эта база данных содержит данные различных макро- и микропоказателей рынков 
разных стран мира. Они классифицированы на ежегодные, поквартальные и ежемесячные данные. 
Так как авторегрессии хорошо справляются с задачей моделирования и прогнозирования процес-
сов в случае, когда они являются стационарными. Для нестационарных процессов авторегрессии 
могут повести себя в прогнозировании непредсказуемо (Ord, Fildes, Kourentzes, 2017). Тогда про-
цессы приводят к стационарному виду, чаще всего используя исчисление конечных разностей ряда 
(Pritularga, Svetunkov, Kourentzes, 2021). Из этой базы данных ближе всего к стационарному типу 
динамики относятся ежемесячные данные.

Статистически достоверными будут выводы, сделанные на 120 и более данных. В нашем случае 
под данными следует понимать номер ряда. Сами ряды в указанной базе данных представлены 
в случайном порядке, поэтому выборка 120 рядов статистических данных с № 1402 до № 1521 пред-
ставляется статистически значимой, а результаты, которые могут быть получены на этих различ-
ных 120 рядах данных, будут достоверными. Уточнение результатов на большем количестве рядов 
не будет являться существенным.

Следует отметить, что многие из этих рядов все же являлись нестационарными, что подтвердила 
проверка по тесту Дики–Фуллера (Mills, 2019). Такие ряды были приведены к стационарному виду.

Ряды, состоящие в среднем из 70 наблюдений, были разбиты на два множества — обучающее 
(63 наблюдения) и проверочное (7 наблюдений). На обучающем множестве ряда с помощью МНК 
оценивались коэффициенты авторегрессий AR(p), где p — порядок авторегрессии, p = 1, …, L. 
В отдельных случаях порядок авторегрессий доходил до L = 28, но чаще всего L < 25.

На проверочном множестве последних семи наблюдений вычислялась средняя абсолютная 
ошибка прогнозирования для каждой из моделей и определялась та модель, которая оказалась дей-
ствительно лучшей в прогнозировании по минимуму этой средней ошибки прогноза.
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Для каждого ряда по критериям минимизации (4) и (9) выбирались модели, после чего они 
сравнивались с этими лучшими, выявленными на проверочном множестве. Иногда критерии (4) 
и (9) указывали на одну и ту же модель как на лучшую (в 24%). Но в остальных случаях критерии 
рекомендовали выбрать разные модели.

Выяснилось, что из 120 случаев AIC указал на лучшую модель только 9 раз, а BIC — 4 раза. Это 
неудовлетворительные результаты — основные информационные критерии редко выбирают луч-
шую модель.

3. Байесовская проверка гипотез для выбора прогнозной модели
Рассмотрим суть байесовской проверки гипотез (Weakliem, 2016).
Обозначим гипотезу i через Hi, ее априорную вероятность P(Hi). Вероятность адекватности ги-

потезы i при появлении апостериорных данных D можно записать как P(Hi|D), а вероятность, что 
наблюдаемые апостериорные данные соответствуют этой гипотезе, обозначим как P(D|Hi). Фор-
мула Байеса

				    P H D P H P D H P Di i i( | ) ( ) ( | ) / ( )=  	 (10)
покажет вероятность гипотезы i при имеющихся данных D.

Поскольку P(D) есть величина постоянная, то выбор лучшей гипотезы сводится к вычислению 
числителя (10):

					     PIC P H P D Hi i i= ( ) ( | ).  	 (11)
Из всех гипотез следует выбирать ту, у которой PIC принимает максимальные значения.

Воспользуемся этим байесовским подходом по проверке гипотез для выбора прогнозной мо-
дели (Светуньков, 2023). Обозначим теперь через P(Mi) статистическую априорную вероятность 
того, что модель i является лучшей оценкой математического ожидания моделируемого процесса. 
При появлении апостериорных данных можно оценить правдоподобие P(D|Mi), что их появление 
подтверждается этой моделью.

Тогда, используя правило (11), можно из конкурирующих друг с другом моделей выбрать ту, 
у которой максимальна апостериорная вероятность P(Mi|D), что при имеющихся данных D модель 
Mi верна. Для этого необходимо вычислить статистическую вероятность P(Mi), что модель i апри-
орно является наилучшей, и правдоподобие P(D|Mi) данных D при условии, что они описываются 
моделью Mi, а затем перемножить их.

Сложность заключается в вычислении априорных и апостериорных вероятностей каждой моде-
ли. Впрочем, находить эти вероятности не обязательно. Из логики байесовской проверки гипотез 
следует, что необходимо сравнивать друг с другом некоторые априорные оценки пригодности мо-
дели, умноженные на апостериорные оценки того, как на самом деле повела себя каждая модель 
и насколько ее использование правдоподобно в случае ее применения на апостериорных данных.

Одним из наиболее универсальных критериев пригодности модели, базирующейся на априор-
ных данных, будет коэффициент детерминации R2 между фактическими априорными данными yt 
и расчетными значениями yt, которые генерирует рассматриваемая модель, т. е.
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Априорное множество данных состоит из T наблюдений.
Как известно, коэффициент детерминации показывает, на сколько процентов динамика одно-

го показателя определяется другим показателем. Он показывает, насколько процентов вариации 
показателя yt объясняются рассматриваемой моделью. То есть он показывает пригодность модели 
для описания прошлых априорных данных. А поскольку коэффициент детерминации лежит в пре-
делах от 0 до 1, как и вероятности, то он вполне может служить аналогом априорной вероятности 
пригодности модели.

Когда модель полностью соответствует исходным данным и описывает каждое фактическое 
наблюдение, коэффициент детерминации будет равен единице. В вероятностной трактовке это 
означает, что правдоподобие модели равно единице. Если модель плохо описывает исходные 

ˆ

ˆ ˆ



	 РЕЗУЛЬТАТИВНОСТЬ ОСНОВНЫХ ИНФОРМАЦИОННЫХ КРИТЕРИЕВ� 123

ЭКОНОМИКА И МАТЕМАТИЧЕСКИЕ МЕТОДЫ     том 61     № 2     2025

данные с большой дисперсией, то значения R2 будут близкими к нулю. Это вызывает сомнения 
в ее правдоподобии.

То есть коэффициент детерминации вполне может быть использован как некоторый аналог 
априорной вероятности пригодности модели. Но, увеличивая сложность модели и увеличивая 
тем самым число коэффициентов k, прогнозист сталкивается с ситуацией, когда модель начинает 
на прошлых данных учитывать влияние случайных факторов, которые в будущем не встретятся. 
В машинном обучении такая ситуация получила название «переобучение» (Kolassa, 2020). Тогда 
при прогнозе такая модель будет моделировать и действия этих случайных факторов, которых уже 
нет. Очевидно, что при этом прогностическая точность модели ухудшится по сравнению с более 
простой моделью, которая эти случайные факторы не учитывает.

Для того чтобы устранить это обстоятельство при выборе лучшей регрессионной модели с по-
мощью коэффициента детерминации, в математической статистике используют нормирован-
ный R2, который вычисляется по формуле

				    R R T T kn
2 21 1 1 1= − −( ) − − −[ ]/ ( ) / ( ) .  	 (13)

Следовательно, в случае когда в распоряжении прогнозиста есть данные, по которым он построил 
модель Mi, то значение Rn

2 между расчетными значениями этой модели и фактическими значени-
ями служит оценкой вероятности P(Mi), что модель хорошо описывает процесс.

Первые сомножители числителя и знаменателя байесовской проверки гипотез (12), которые 
были обозначены как P(H1) и P(H2), определены — это Rn

2
1 модели M1 и Rn

2
2  модели M2, которые 

были вычислены на априорном множестве данных, состоящих их Т наблюдений.
После построения модели и нахождения всех ее коэффициентов прогнозист априорно пред-

полагает на основе коэффициентов детерминации, какая модель должна лучше прогнозировать 
моделируемый процесс. Когда в его распоряжении появляются новые, т. е. апостериорные, дан-
ные D, он может проверить — насколько хорошо каждая из моделей аппроксимирует эти данные. 
Оценкой правдоподобия полученных данных P(D|Mi) также может служить R2 между фактически-
ми и расчетными наблюдениями. Здесь модель проверяется на фактических данных и ее слож-
ность не играет никакой роли, главное — ее точность вне зависимости от ее сложности. Поэтому 
в данном случае нет оснований применять нормированный Rn

2. Поведение модели на проверочном 
множестве характеризует простой R2. Поскольку он вычисляется на апостериорных данных, будем 
обозначать его как Ra

2.
Теперь выбор наилучшей с позиций байесовского критерия (11) модели определяется отноше-

нием (Svetunkov S., Svetunkov I., 2024):
						      PIC R Ri ni ai= 2 2 .  	 (14)

Та модель, для которой значение (14) максимально, будет наилучшей с позиций теоремы Байеса.
Критерий (14), помимо основной своей задачи по байесовскому выбору модели, имеет ярко вы-

раженный статистический смысл. В правой части (14) находится произведение двух коэффициентов 
детерминации — априорного и апостериорного. Если извлечь квадратный корень из этого произве-
дения, получим среднюю геометрическую коэффициентов детерминации. А это является определен-
ной статистической характеристикой приемлемости модели в среднем — на априорном и апостери-
орном множествах. Поэтому смысл PIC довольно простой: лучшей является модель, у которой средняя 
геометрическая априорного и апостериорного коэффициентов детерминации является максимальной.

При практическом применении критерия PIC необходимо иметь в распоряжении априорные 
и апостериорные данные. Для их получения совокупность имеющихся данных следует разделить 
на две части — обучающую и проверочную. Первая часть данных является априорным множеством, 
поскольку на них строится каждая из конкурирующих моделей, а вторая — апостериорным множе-
ством, поскольку для построенных моделей эти данные будут новыми.

Выбор размера выборки, который следует отнести к апостериорным данным (проверочному 
множеству), определяется целями прогнозирования. Поскольку в данном исследовании изучается 
возможность выбора модели для краткосрочного прогнозирования, то логика определения разме-
ра выборки такова.

Пусть исследователь, получив лучшую модель на априорных данных, проверяет ее на апостери-
орном множестве. Первое же значение апостериорного (проверочного) множества может случай-
ным образом как соответствовать сути процесса (быть хорошим), так и не соответствовать ему (быть 
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плохим). Распределение вероятностей того, что первое значение ряда на апостериорном множестве 
случайно может быть плохим или хорошим, не известно. Поэтому примем как равновероятное по-
явление как «плохого», так и «хорошего» наблюдений. Значит, данная модель случайным образом 
может повести себя плохо на первом же проверочном значении с вероятностью p1 = 0,5.

Второе наблюдение априорного множества с вероятностью p1 = 0,5 может быть как «хоро-
шим», так и «плохим». Вероятность того, что одновременно и первое, и второе значения данных 
апостериорного множества окажутся «плохими», представляет собой умножение вероятностей 
p1p2 = 0,5×0,5 = 0,25.

Очевидно, вероятность, что n следующих друг за другом данных апостериорного (проверочно-
го) множества подряд окажутся «плохими», т. е. — противоречащими сути изучаемого процесса, 
будет равна

						      Pn
n= 0 5, .  	 (15)

Тогда для n = 5 получим P5 = 0,55 = 0,031, для n = 6 — P6 = 0,016, а для n = 7 — P7 = 0,008. Это зна-
чит, что апостериорное (проверочное) множество для вычисления показателей PIC должно в себе 
содержать от пяти до семи последних наблюдений. Большее количество наблюдений будет излиш-
ним, меньшее — недостаточным. В нашем исследовании использовалось апостериорное множе-
ство из пяти наблюдений (n = 5).

4. СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕЗУЛЬТАТОВ ВЫБОРА

Для того чтобы удостовериться в том, что предложенный критерий выбора лучшей прогнозной 
модели имеет право на существование, проведем сравнение трех критериев выбора — AIC, BIC 
и PIC. Будем использовать те же 120 рядов данных из базы профессора С. Макридакиса, что и ра-
нее, формируя и оценивая коэффициенты моделей простых авторегрессий AR(p), последователь-
но увеличивая порядок модели p от 1 до L = 20 (с некоторыми исключениями, характерными для 
отдельных рядов, в которых лаг составил величину 20 < p <26).

Ранее было показано, что из 120 рядов AIC правильно указал на лучшую модель 9 раз, BIC — 
4 раза, а PIC — 12 раз. Это лучший результат, но и он не особенно впечатляет.

Если найти лучшую модель из 20 моделей авторегрессии (в среднем) изучаемым критериям 
не под силу, изменим условия проверки: определим, сколько раз каждый из критериев — AIC, 
BIC и PIC — указал на хорошую модель, а сколько раз — на плохую, считая при этом ее лучшей.

Для отнесения моделей к классу «плохих» или «хороших» выявим для каждого ряда лучшую 
модель и худшую. Разность ошибки прогноза на проверочном множестве между наилучшей и на-
ихудшей моделями примем за 100%, где ошибке наихудшей модели присваивается 100%. Тогда 
к классу «плохих» моделей отнесем те, у которых в данной шкале ошибка не менее 80%, а к классу 
«лучших» — у которых в этой шкале не более 20%.

В интервал как хороших, так и плохих моде-
лей может попасть разное число моделей. На-
пример, для ряда № 1482 в число хороших мо-
делей попадают 10 моделей, а именно — с AR(3) 
по AR(9), AR(11) и AR(13), AR(14), а для ряда 
№  1474 — попала только 1 модель, она же — 
наилучшая — AR(12).

Результаты проверки критериев выбора 
лучшей модели на 120 различных рядах базы 
данных M3C с №  1402 по №  1521 приведены 
в табл. 1.

Поскольку в исследовании было использовано 120 различных статистических рядов данных, 
можно считать полученные результаты статистически значимыми. Это подтверждается еще и тем, 
что уже при подсчете результатов по 100 рядам данных пропорции, указанные в табл. 1, оставались 
стабильными, подвергаясь лишь незначительной корректировке при добавлении новых данных 
вплоть до 120‑го по счету ряда № 1521.

Таблица 1. Число моделей авторегрессий различного 
качества, которые были выбраны разными 
критериями как лучшие на 120 рядах данных

№  Качество модели AIC BIC PIC
1 Лучшая модель 9 4 12
2 Хорошая модель 49 20 57
3 Плохая модель 25 27 20
4 Модель среднего качества 

(120 — (п. 1+п. 2+п. 3))
37 69 31
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Поскольку в табл. 1 приведены количества 
выбора моделей, то, отнеся их к общей сово-
купности наблюдений, можно получить стати-
стическую (частотную вероятность) выбора ин-
формационными критериями моделей того или 
иного качества. Для удобства анализа эти ча-
стотные вероятности сведены в табл. 2.

Из данных в табл.  2 следует, что критерий 
PIC выбирает лучшую или хорошую модели для 

прогнозирования с частотной вероятностью 0,575 в более чем половине случаев. Но при этом же 
следует ожидать, что с вероятностью в 0,167 критерий укажет на плохую прогнозную модель.

Критерий Акаике (AIC) с вероятностью 0,483 — чуть менее 50% — выбирает хорошую или наи-
лучшую модель, но в 20,8% случаев следует ожидать, что выбранная модель окажется в числе худ-
ших прогнозных моделей.

Что касается применения критерия Шварца (BIC) в задаче выбора прогнозной модели из мно-
жества возможных, прогнозисту следует знать, что только с вероятностью в 0,200 он может полу-
чить лучшую или хорошую модель, а в 22,5% — плохую.

ЗАКЛЮЧЕНИЕ

Предлагаемый критерий выбора лучшей прогнозной модели PIC, основанный на принципах 
байесовской проверки гипотез, по сути развивает подход, использовавшийся прогнозистами при 
выборе лучшей модели для экономического прогнозирования много лет, и часто применяемой се-
годня, а именно на обучающей выборке строятся альтернативные прогнозные модели, пригодность 
которых проверяется на проверочном множестве. Выбирается та прогнозная модель, которая ока-
залась лучшей на этом проверочном множестве, а результаты аппроксимации прошлого игнори-
руются. Наш критерий предлагает делать выбор иначе — по результатам работы на проверочном 
множестве априорные предположения о пригодности каждой модели к прогнозированию не от-
брасываются, а уточняются на основе апостериорных данных, после чего на основе этого уточнен-
ного знания делается выбор модели. Это типичный байесовский вывод, и проведенное сравнение 
PIC с информационными критериями AIC и BIC подтверждает его эффективность. Поскольку 
исследования проводились на представительной выборке из почти 2 500 моделей авторегрессии, 
полученные выводы следует признать статистически обоснованными.

Исследования были проведены на примере простых авторегрессий AR(p), но представляется, 
что результаты не особенно изменятся, если использовать эти критерии для более сложных моде-
лей авторегрессий, например ARIMA(p, d, q). Это следует из теоретического обоснования крите-
рия PIC, однако эта гипотеза нуждается в дополнительной эмпирической проверке.

Критерий PIC, разработанный на основе байесовского подхода и предполагающий пере- 
оценку предварительных априорных предположений на основе новых апостериорных данных, 
тем не менее определяет возможную модернизацию метода кросс-валидации для моделирова-
ния и прогнозирования стационарных обратимых процессов. Во-первых, для авторегрессий при 
кросс-валидации он рекомендует разбивать имеющееся множество данных на k отрезков так, что-
бы в каждом отрезке было от 5 до 7 наблюдений. Во-вторых, рекомендуется выбирать ту модель, 
для которой критерий PIC в процессе кросс-валидации по всем k отрезкам оказался наибольшим. 
Сравнение стандартных методов кросс-валидации с модернизацией на основе PIC также является 
задачей будущих исследований.

К апостериорному множеству было отнесено 5 последних наблюдений. Было показано (фор-
мула (15)), что для задач краткосрочного прогнозирования это множество должно включать в себя 
от 5 до 7 наблюдений. Относительно апостериорного (обучающего) множества никаких предло-
жений не высказывалось. Поэтому интерес представляет дополнительное научное исследование 
того, как размер априорной выборки обучающего множества влияет на выбор модели для прогно-
зирования. Следует ли учитывать все множество данных, которое может насчитывать не десятки, 
а сотни наблюдений, или же следует ограничить априорное множество каким-то пределом? Если 
есть этот предел, то как его определять?

Таблица 2.  Статистические (частотные) 
вероятности по результатам табл. 1

№  Качество модели AIC BIC PIC
1 Лучшая модель 0,075 0,033 0,100
2 Хорошая модель 0,408 0,167 0,475
3 Модель среднего качества 0,308 0,575 0,258
4 Плохая модель 0,208 0,225 0,167
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Необходимо также провести сравнительные исследования по выбору лучшей прогнозной мо-
дели для случая среднесрочного прогнозирования. В этом случае используются эконометрические 
модели прогнозирования, базирующиеся на регрессиях разных форм и выбор с помощью PIC луч-
шей модели регрессии для прогнозирования представляется интересной задачей.
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Abstract. Any theory is based on a certain axiomatic core, which includes axioms and postulates. The 
latter includes conclusions and results from other theories or branches of science that are accepted 
in this theory without proof. Among such postulates accepted in modern economic forecasting are 
informational criteria, which are used to select the best forecasting model from a set of competing 
ones. Most often, forecasters use two main criteria — Akaike and Schwarz. The article demonstrates, 
using the example of short-term forecasting of 120 different data series through AR(p) autoregressions, 
that in practice this tool does not perform as well as expected. An alternative to the informational 
criteria can be a criterion based on Bayesian hypothesis testing, which is outlined in the article. This 
criterion incorporates information about the likelihood of describing prior and posterior data, the cross-
accounting of which corresponds to Bayesian selection. A comparative analysis of the application of 
informational criteria and the new criterion, the results of which are presented in the article, supports 
the latter criterion, which is recommended for practical use.
Keywords: short-term forecast, Akaike information criterion, Schwarz information criterion, 
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