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1. INTRODUCTION

The purpose of this paper is to generalize the framework of activity analysis discussed in A. Villar (Vil-
lar, 2003) and obtain similar results concerning solvability. We generalize the model due to A. Villar (Villar, 
2003), without requiring any dimensional requirements on the activity matrices and by introducing a model 
of activity analysis in which each activity may (or may not) have a capacity constraint i. e., a maximum level 
at which the activity can operate. This may be one way to accommodate meaningful non-linearities similar 
to that considered for input–output analysis in I. Sandberg (Sandberg, 1973).

In I. Sandberg (Sandberg, 1973), the input-output coefficients were assumed to be differentiable, which 
is very likely an approximation of the more realistic and practically applicable representation in which the 
input-output coefficients are piecewise constant. Minor, technical increments on the solvability result in 
Sandberg (Sandberg, 1973) can be found in P. Chander (Chander, 1983) and some references therein. Un-
doubtedly, piecewise constant input-output constants are more difficult to deal with mathematically than 
differentiable ones. Non-linearities are much easier to represent in the framework of linear activity analysis 
by introducing upper bounds — ​whenever there is a capacity constraint for the levels at which each such ac-
tivity may operate. We do this by introducing a model of activity analysis in which each activity may (or may 
not) have a capacity constraint. In this paper we follow the usual nomenclature of input-output analysis for 
“the quantity of a good supplied to the consumers outside the production (or manufacturing) sector” and 
refer it as “final demand”.

It seems that in this significantly more general framework we are able to obtain the desired results con-
cerning solvability and existence of an equilibrium price-vector under weaker assumptions than the corre-
sponding requirements in A. Villar (Villar, 2003). The property that guarantees solvability has the following 

1 This paper generalizes and extends the framework of analysis as well as the results in an earlier paper by the author entitled “Pro-
duction Analysis for Proper Activity Matrices” (https://drive.google.com/file/d/15E2SlIb5NeWBgtRI-O1gb1UA9CG6QhJc/view).
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economic interpretation: Given two price vectors p, q a final demand vector and unit prices of operating ca-
pacity constrained activities, if the revenue from operating every unconstrained activity at unit level at price-
vector p is no less than doing the same at price-vector q and if the revenue from operating a constrained 
activity at unit level at price-vector p is no less than doing the same at price-vector q plus the unit price of 
operating the activity then the value of the final demand at price vector p is no less than the value of the final 
demand at price-vector q plus the total cost of the capacities. In the context of the constraint linear activ-
ity analysis model, we call this property “weakly proper”. We also prove a version of the Non-Substitution 
Theorem that establishes the existence of “efficiency price-vectors” as a joint product. However, our Non-
Substitutions Theorem — ​in spite of the generality of our model as compared to the one due to A. Villar 
(Villar, 2003) — ​requires that if there are capacity constraints, then there is a minimal subset of the set of 
capacity constrained activities that are always used up to full capacity, for the production of all producible 
final demand vectors. Further, these capacity constrained activities are the only ones whose capacities are 
binding for some producible final demand vector. Hence there is a clear dependence of the equilibrium price 
vector on the final demand vector (i. e. the vector of quantities supplied for non-manufacturing prices); un-
like the conclusion of Sraffian economics 2, and we are able to show this without using production functions. 
Our framework is a generalization of the one used in Sraffian economics.

In a concluding section of this paper, we apply our analysis and results to the two-period multisector 
activity analysis model with capacity constraints. Production takes place in the current period and the sale 
of goods outside the production system, takes place in a subsequent period. The activity matrix is the dif-
ference between a non-negative output coefficient matrix and a non-negative input coefficient matrix, with 
the coefficients being measured in money units for each activity. Almost all the results obtained thus far get 
replicated in this macroeconomic context. However, some reformulations are required for issues related to 
existence of equilibrium price vector and as a consequence, issues related to efficiency prices via the non-
substitution theorems. The corresponding concepts in this application refer to “inflation rate” vectors, i. e., 
“equilibrium inflation rate-vector” and “efficiency equilibrium rate-vector” respectively. In the case of final 
demand for services (provided by the service sector) which do not require manufacturing, but are none-the-
less measured in current producer prices, this may imply a difference between producer prices and the prices 
that consumers are required to pay for the services during the current period.

In what follows we will be making extensive use of mathematical results in Topics 2 and 3 — ​and there-
fore by implication results in Topic 1 — ​of Lahiri (Lahiri, 2022). Sometimes, when there is no scope for 
confusion, given two vector/points x and y in a real Euclidean space of the same dimension we use x ≥ y to 
denote that every co-ordinate of x is greater than or equal to the corresponding coordinate of y, x > y to de-
note x ≥ y, but x ≠ y (x is not equal to y), and x >> y to denote every coordinate of x is strictly greater than 
the corresponding coordinate of y.

2. MOTIVATION

Consider a very simple production process which produces a single output (“corn”) from a single input 
(once again “corn”). In the classical or Leontief Input-Output (IO) Model one assumes that there exists a 
fixed positive constant a such that ax units of corn are required to produce x units of corn. The production 
process is productive if and only if 0 < a < 1. However, in reality the assumption of a fixed input-out coef-
ficient a is unrealistic. Fertility of the soil is not uniform. Hence, it is unreasonable to assume that input-
output coefficient remains constant for all levels of output.

Sandberg (Sandberg, 1973) suggested that the input-output coefficient(s) is(are) a differentiable function(s) 
of the gross output. Once again, differentiability of input-output coefficient appears to be an “unrealistic” as-
sumption for actual production processes. Even if such an assumption is theoretically true, it is extremely dif-
ficult to invoke it for practical use in “production planning”. It is perhaps more realistic to assume that input-
output coefficients are piece-wise constant. In what follows we generalize such an assumption and develop the 
theory that follows from it to the case of production with possibly more than one good.

The Sraffian conclusion of market prices being independent of the quantity “supplied” (which is referred 
to in the literature on input-output analysis as “final demand”) with fixed input-output coefficients and hence 
fixed unit costs of production with competitive factor markets, is not unreasonable at all in the “one good” 
setting, since that is precisely what is indicated by the intersection of any demand curve with a horizontal 
marginal cost (or perfectly competitive supply curve). However, in the more general setting with piece-wise 

2 See the sixth paragraph at: https://www.rethinkeconomics.org/journal/sraffian-economics/
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constant input-output coefficients or piece-wise constant marginal cost functions, neither would the associated 
extension of the Sraffian linear model indicate such independence between market price and quantity supplied 
and nor would it be implied by the intersection of the market demand and marginal cost curves.

3. THE MODEL

Consider an economy with m produced goods indexed by i = 1, …, m and n activities indexed by j = 1, …, n.
An m×n matrix of real numbers is said to be non-zero, if it has “at least one non-zero entry”.
Note. The rank of a non-zero matrix is a positive integer.
Let M be a non-zero m×n matrix of real numbers called an activity matrix the column j of which denoted 

M j for j ∈ {1, …, n} denotes the amount of net output of each good if the activity j is operated at unit level. 
Thus for I ∈ {1, …, m} and j ∈ {1, …, n}, the entry i of M j denoted mij denotes the net output (of the pro-
duced good i if the activity j (or activity j) is operated at unit level. If mij is negative, then –mij is the amount 
of the produced good i used as net input, if the activity j is operated at unit level.

In what follows, unless otherwise stated, we shall use net output and output interchangeably. The same 
applies for net input and input.

An activity-vector is a column vector x ∈ +
n such that for all j ∈ {1, …, n}, the row j (or coordinate) of 

x, denoted xj, is the level at which activity j is operated.
A constrained linear activity analysis model (CLAAM) is a pair ( , )|M x j Wj� � �  where M is an m×n ac-

tivity matrix and if W ≠ φ then � � �x j Wj |  is an array with x j ∈ ++ being the maximum level at which ac-
tivity j ∈ W ⸦ {1,…, n} can operate, the possible levels of operation for activities in (1, …, n}\W being unbound-
ed above. If W = φ, then a constrained linear activity analysis model with activity matrix M is (M, φ).

In the case of (M, φ) no activity has a capacity constraint.
Note. This is a very general formulation. In particular there could be non-negative m×n matrices B, A 

such that M = B — ​A.
A column vector d ∈ +

m\{0} is said to be a final demand vector if for all i ∈ {1, …, m}, row i of d, i. e. di 
represents the quantity of good supplied i for non-manufacturing/non-production purposes, i. e. quantity 
of the good supplied i to the consumers outside the production process.

The following is an example of an activity matrix, different from any in A. Villar (Villar, 2003) and any 
known to us otherwise (see chapters 6 and 7 of K. Lancaster (Lancaster, 1968)).

Example 1. Let C be a n×n matrix of non-negative real numbers such that for all i, j∈{1, …, n}, cij which 
is the element (i, j) of C, is a non-negative real number that denotes the level at which activity i is required 
to be operated — ​to produce enough of the m produced goods — ​so as to be able to operate activity j at unit 
level. Let B be a m×n matrix of non-negative real numbers such that for all h ∈ {1, …, m} and I ∈ {1, …, n}, 
bhi is the element (h, i) of B, denoting the (net) amount of good h that is produced with the purpose of sat-
isfying final demand, if activity i operates at unit level.

Let M = B(I–C).
If x ∈ +

n satisfying xj ≤ x j for all j ∈ W, if W ≠ φ and unconstrained otherwise, is an activity-vector then 
Cx denotes the level at which the activities are required to operate in order to “operationalize” the activity 
vector x. The remaining levels of activity vector (I–$5)x are used to produce the “produced goods” in the 
amount B(I–C)x, provided (I–C)x ∈ +

n.
In what follows, unless otherwise stated or required, we will write (M x j Wj, |� � �) to represent a CLAAM, 

with the implicit understanding that if W = φ, then the CLAAM reduces to or represents (M, φ).
The following definition will prove to be important in the analysis that follows.
A price-vector is a vector p ∈ +

m\{0} where the coordinate i of p, denoted pi is the unit price at which the 
produced good i is sold in the market. Let w > 0 denote wage rate of labour.



	 ЭКОНОМИКА И МАТЕМАТИЧЕСКИЕ МЕТОДЫ     том 59     № 1     2023

8	 LAHIRI

4. SOLVABILITY OF CLAAM

Given a CLAAM (M x j Wj, |� � �) and a non-empty subset of activities J, we define the set Constrained 
Span (M x j Wj, |� � �, J), denoted CS M x j W Jj( |, , )� � �  = {Mx ∈ m|x ∈ n with xj ≤ x j for j ∈ W and 
xj = 0 for all j ∉ J}.

Thus, CS M x j W Jj( |, , )� � �  ⸦ Span (M, J).
If J = {1, …, n}, then CS M x j W Jj( |, , )� � �  is written simply as CS M x j Wj( |, )� � � .
Let J be a non-empty subset of {1,…, n}.
The content of the following property is based on one due to Villar (Villar, 2003).
A CLAAM (M x j Wj, |� � �) is said to be weakly proper for (a non-empty subset of activities) J, if for 

all p, q ∈ +
m, any array of non-negative real numbers � � � �� j j W J|  and d ∈ CS M x j Wj( |, )� � � ∩ 

∩ (+
m\{0}): [ p M jT  — ​αj ≥ q M jT  for all j ∈ W ∩ J and p M jT  ≥ q M jT  for all j ∈ J\W implies pTd − ​ 

−  � j jj W J
x

� ��  ≥ qTd].
We use (CLAAM (M x j Wj, |� � �) as weakly proper for J and (M x j Wj, |� � �) is a CLAAM weakly 

proper for J, or just (M x j W Jj, ,|� � � ) is weakly proper for J interchangeably.
Weakly proper in the context of CLAAM has the following economic interpretation (if we interpret αj 

as the unit cost of operating a capacity constrained activity j∈W ∩ J):
if the revenue from operating every unconstrained activity in J at unit level at price-vector p is no less 

than doing the same at price-vector q and if the revenue from operating a capacity constrained activity in J 
at unit level at price-vector p is no less than doing the same at price-vector q plus the unit price of the ca-
pacity then the value of the final demand d at price vector p is no less than the value of the final demand d 
at price vector q plus the total cost of the capacities.

In the interpretation provided above we are assuming that capacities have an imputed price/shadow price 
given by the alphas up to the maximum that is possible.

A CLAAM M x j Wj, |� � �� � is said to be weakly proper if it is weakly proper for {1, …, n}.
In particular, (by  setting αj = 0 for all j ∈ W)  for all p, q ∈ +

m and d ∈ CS M x j W Jj( |, , )� � �  ∩  
∩ ( +

m\{0}): [pTM ≥ qTM implies pTd ≥ qTd].
Given a CLAAM ( , )|M x j Wj� � �  the activity matrix M is said to be weakly proper if for all p, q ∈  +

m 
and d ∈ CS M x j W Jj( |, , )� � �  ∩ ( +

m\{0}): [pTM ≥ qTM implies pTd ≥ qTd].
Clearly the activity matrix M is weakly proper if the CLAAM M x j Wj, |� � �� � is weakly proper.
Since any point in m can always be expressed as the difference between two points in +

m the following 
is an immediate consequence of the definition of a weakly proper activity matrix.

CLAAM M x j Wj, |� � �� � is weakly proper for J if and only if for all p ∈ m, any array of non-negative 
real numbers � � � �� j j W J|  and d∈(CS M x j W Jj( |, , )� � � )∩(+

m\{0}): [pTM — ​αj ≥ 0 for all j ∈ W∩J, 
pTM j ≥ 0 for all j ∈ J\W, implies pTd — ​ � j jj W J

x
� ��  ≥ 0].

Note. The definition corresponding to weakly proper activity matrices in A. Villar (Villar, 2003) is equiv-
alent to our definition of weakly proper activity matrices of CLAAM’s because A. Villar (Villar, 2003) re-
quires Span (M)∩ ++

m ≠ φ.
Lemma 1. Suppose CS M x j W Jj( |, , )� � �  ∩ ++

m ≠ φ. Then (M x j Wj, |� � �) is a weakly proper CLAAM 
for J if and only if  � � ��p q m,  , any array of non-negative real numbers � � � �� j j W J|  and d ∈ CS(M)∩ ++

m : 
[ p M q Mj

j
jT T� ��  � � �� j W J  and p M q Mj jT T≥  � �j W J\  implies pTd − ​ � j jj W J

x
� ��  ≥ qTd].

P r o o f. If (M x j Wj, |� � �) is a weakly proper CLAAM for J, then it is easy to see that � � ��p q m,  , any 
array of non-negative real numbers � � � �� j j W J|  and d ∈ CS M x j W Jj( |, , )� � � ∩ ++

m :  
[ p M q Mj

j
jT T� ��  � � �j W J  and p M q Mj jT T≥  � �j W J\  implies pTd − ​ � j jj W J

x
� ��  ≥ qTd].

Hence suppose that � � ��p q m,  , any array of non-negative real numbers � � � �� j j W J|  and  
d ∈ CS M x j W Jj( |, , )� � �  ∩ ++

m : [ p M q Mj
j

jT T� ��  � � �j W J  and p M q Mj jT T≥  � �j W J\  implies 
pTd − ​ � j jj W J

x
� ��  ≥ qTd].
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Then as in the case of weakly proper CLAAM’s for J, we get in this case that for all p ∈ m, an ar-
ray of non-negative real numbers � � � �� j j W J|  and d∈CS M x j W Jj( |, , )� � � ∩ ++

m : [ p M jT  — ​αj ≥ 0 
� � �j W J , p M jT  ≥ 0 � �j W J\ , implies p d xj jj W J

T � �
� �� � 0].

Suppose d∈CS M x j W Jj( |, , )� � �  ∩ (+
m\{0}).

By hypothesis CS M x j W Jj( |, , )� � �  ∩ ++
m ≠ φ. Let d*∈CS M x j W Jj( |, , )� � �  ∩ ++

m .
Now d*∈ CS M x j W Jj( |, , )� � �  ∩ ++

m  implies td*∈ CS M x j W Jj( |, , )� � �  ∩ ++
m  for all 1 0� �t .

Similarly, d ∈ CS M x j W Jj( |, , )� � �  ∩ +
m implies (1–t)d + td* ∈ CS M x j W Jj( |, , )� � �  ∩ ++

m  for all 
1 0� �t .

Thus, d ∈ CS M x j W Jj( |, , )� � �  ∩ +
m implies (1–t)d + td*∈ CS(M)∩ ++

m  for all 1 0� �t .
Let < t(h)|h ∈ N > be a sequence of positive real numbers less than or equal to 1, converging to 0.
Clearly, the sequence < (1−t(h))d + t(h)d*|h ∈ N > converges to d and for all h ∈ N, p t d t dh hT(( ) ) .( ) ( ) *1 0� � �
Thus pTd ≥ 0.
Thus, (M x j Wj, |� � �) is a weakly proper CLAAM for J. ■
Proposition 1. (M x j Wj, |� � �) is a weakly proper CLAAM for J if and only if for all final demand vectors 

d ∈ CS M x j W Jj( |, , )� � �  there exists x∈+
m satisfying Mx = d, xj ≤ x j  for j ∈ W∩J and xj = 0 for all j ∉ J.

P r o o f. Let d be a final demand vector in CS M x j W Jj( |, , )� � � . For d = 0, clearly Mx = d, where 
x = 0 and further xj ≤ x j for j ∈ W. Hence, we may suppose that d CS M x j W Jj

m� � � � � � ��( |, , ) \ . 0
( , )|M x j Wj� � �  is weakly proper for J if and only if there does not exist p m∈ , any array of non-

negative real numbers � � � �� j j W J|  and d CS M x j W Jj� � � �( |, , )  ∩ ++
m  satisfying p M aj

j
T � � 0 

� � �j W J , p M jT ≥ 0 � �j W J\  and p d xT
j jj W J

� �
� �� �  0.

Hence by Farka’s lemma, ( , )|M x j Wj� � �  is weakly proper for J if and only if Mx = d, x ∈ +
n, xj ≤ x j 

for j ∈ W ∩ J and xj = 0 for all j ∉ J has a solution. ■
Note. Nowhere have we invoked any restriction on the size of the activity matrix or its rank, except that 

the rank of the activity matrix is positive. That leaves out the uninteresting case of M = 0. Thus, our frame-
work is considerably more general than that of Villar (Villar, 2003).

An immediate consequence of the proposition above is that the requirement of n ≤ m in Villar (Villar, 
2003) can be dispensed with not only for solvability problem in activity analysis, but also for the non-sub-
stitution theorem (theorem 5) in the same paper.

5. EXISTENCE OF EQUILIBRIUM PRICE-VECTOR

We will now present a similar generalization as above for the existence of an equilibrium price-vector for 
a CLAAM ( , )|M x j Wj� � � .

Let Am+1 be a row vector in n with all co-ordinates strictly positive, where the entry in the colomn j 
denoted am+1, j > 0, is the amount of the only non-produced good called “labour” that is used as input if 
activity j is operated at unit level. Let L > 0 be the total initial amount of labour in the economy.

Recall that a price-vector is a vector p ∈ +
m\{0}. Let w > 0 denote wage rate of labour.

At price-vector p and wage rate w the profit-vector at the pair (p, w) denoted � p w p M wAm,� � � � �
T

1.
A row vector v ∈ +

n is said to be profitable at wage rate w > 0, if there exists q ∈ m such that qTM = wAm+1 + v.
Note. The vector q in the definition of profitable vectors need not be non-negative.
A price-vector p is said to be an equilibrium price-vector at the wage rate w > 0 and row-vector v∈+

n if 
v = π(p, w).

Recall that an activity matrix M is said to be weakly proper if for all p, q ∈ +
m and d ∈ CS M x j W Jj( |, , )� � �  ∩ 

∩(+
m\{0}): [pTM ≥ qTM implies pTd ≥ qTd].

Proposition 2. Given a CLAAM ( , )|M x j Wj� � � , suppose M is a weakly proper activity matrix and 
v is a profitable row vector at wage rate w > 0. Then there exists an equilibrium price-vector p at the wage 
rate w and row-vector v.
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P r o o f. Since w > 0, Am+1 >> 0 and v ≥ 0, we get wAm+1 + v >> 0.
Since v ∈ +

n if there exists p ∈ +
m such that pTM = wAm+1 + v, then it must be the case that p ∈ +

m\{0}.
Since v is profitable at wage rate w > 0, there exists q ∈ m such that qTM = wAm+1 + v.
Towards a contradiction suppose that there does not exist p ∈ +

m such that pTM = wAm+1 + v. By Farkas’ 
lemma, there exists x ∈ m such that Mx ∈ +

m and (wAm+1 + v)x < 0.
Since M is weakly proper, Mx ∈ +

m implies that there exists y ∈ +
n such that My = Mx ≥ 0.

Now qTM = wAm+1 + v >> 0 and y ≥ 0 implies qTMy = (wAm+1 + v)y ≥ 0.
Thus My = Mx implies qTMx = qTMy = (wAm+1 + v)y ≥ 0.
On the other hand qTM = wAm+1 + v implies qTMx = (wAm+1 + v)x < 0, contradicting qTMx ≥ 0, that 

we obtained above.
Thus there exists p ∈ +

m such that pTM = wAm+1 + v and as we observed earlier this p ∈ +
m\{0}. ■

6. NON-SUBSTITUTION THEOREM

Recall that a final demand vector is a column vector d ∈ +
m\{0}.

Let J be a non-empty subset of {1, …, n}.
Given a CLAAM ( , )|M x j Wj� � � , a final demand vector d is said to be producible by (activities in) J 

if there exists x ∈ +
n satisfying Mx = d, Am+1x ≤ L, xj ≤ x j for all j ∈ W, and xj = 0 for all j ∉ J. Clearly any 

such x must belong to +
n \{0}.

It follows from proposition 1, that if ( , )|M x j Wj� � �  is weakly proper for J, then any final demand 
vector d ∈ CS M x j W Jj( |, , )� � �  is producible by J, provided the requirement of labour to produce it does 
not exceed L.

If J = {1, …, n}, then a final demand vector producible by J is said to be producible.
Hence the set of all final demand vectors producible by J is {Mx ∈ +

m\{0}|x ∈ +
n, xj ≤ x j for all j ∈ W, 

Am+1x ≤ L, and xj = 0 for all j ∉ J}.
Given a price-vector p, a wage rate w > 0, a producible final demand vector d, and x ∈ +

n satisfying 
Mx = d, the aggregate profit of the production sector is pTd — ​wAm+1x. If the production sector intended 
to maximize profit, then it would be required to solve the following profit maximization problem: Find x to 
solve p d wA xm

T   � ��1 max subject to Mx = d, Am+1x ≤ L, xj ≤ x j for all j ∈ W, x ≥ 0.
However, given the price-vector p and w, the above for a producible final demand vector is equivalent to 

solving the following linear programming problem denoted LP – ​d:
wA xm� �1 min subject to Mx = d,  −Am+1x ≥ – L,  – xj ≥ – ​x j  for all j∈W, x ≥ 0.

If y solves LP — ​d then y > 0 since d > 0. Thus Am+1y > 0.
The question that we are interested in is the following: If for some producible final demand vector, x* is 

an optimal solution for the minimization problem, then is it the case that for all final demand vectors pro-
ducible by j x j| ,* �� �0  there exists an optimal solution for the minimization problem, such that the activities 
operated at a positive level at this optimal solution is a subset of j x j| * �� �0 ?

Given a producible final demand vector d, the dual of LP − ​d denoted DLP — ​d is the following linear 
programming problem: find q∈m, an array of non-negative real numbers � � � h j Wj |  and a real number 
α ≥ 0 to solve:

q d L h xT
j jj W

� � �
��� max subject to q M aA h wAj

m j j m j
T � � �� �1 1, ,  for all j∈W, 

q M A wA j Wj
m j m j

T  � �� �� �� 1 1, , .
Suppose there exists a producible final demand vector d* and let x* be an optimal solution for LP − ​d*. By 

the Weak Duality Theorem for LP, there exists q*∈ m, an array of non-negative real numbers � � �h j Wj
* |  

and a real number α* ≥ 0 such that:
I) q*TM  j − ​α*Am+1, j − ​hj

* ≤ wAm+1, j for all j ∈ W,
II) q*TM  j − ​α*Am+1, j ≤ wAm+1, j for all j ∉ W,

III) [q*TMj — ​α*Am+1, j − ​hj
* − ​wAm+1, j] x j

* = 0 for all j ∉ W,
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IV) [q*TM  j − ​α*Am+1, j − ​wAm+1, j] x j
* = 0 for all j ∉ W,

V) Mx* = d*,
VI) α*[Am+1x*– L]= 0,

VII) x x j Wj j
* ,� � �

VIII) [ ] ,*x x j Wj j� � � �0

IX) [ ] .* * * * *q d h x wA xL j jj W m
T � � �

� ��� 1

Since by (V) Mx* = d*, (III), (IV) and (VI) implies [ ] .* * * * *q d h x wA xL j jj W m
T � � �

� ��� 1

[ ]* * * * * *q d h x wA xL j jj W m
T � � �

� ��� 1   combined with (VIII) implies [ ] ,* * * * *q d h x wA xL j jj W m
T � � �

� ��� 1  
which is (IX).

Thus, (III), (IV), (V), (VI) and (VIII) implies (IX).
Hence the required system of equations and inequalities are:

I) q M j*T  – α*Am+1, j − ​hj
* ≤ wAm+1, j for all j ∈ W,

II) q M j*T  – α*Am+1, j ≤ wAm+1, j for all j ∉ W,
III) [q M j*T  – α*Am+1, j − ​hj

* − ​wAm+1, j] x j
* = 0 for all j ∈ W,

IV) [q M j*T  – α*Am+1, j − ​wAm+1, j] x j
* = 0 for all j ∉ W,

V) Mx* = d*,
VI) α*[Am+1x* − ​L] = 0,

VII) x j
* ≤ x j for all j ∈ W,

VIII) [x j
* − ​x j] hj

* = 0 for all j ∈ W.
Note that {j|x j

* > 0} ≠ φ, since d* > 0, {j ∈ W |x j
* > 0} ⸦ {j|q M j*T  − α*am+1, j − ​hj

* − wam+1, j = 0},  
{j ∉ W   |x j

* > 0} ⸦ {j ∉ W |q M j*T − α*am+1, j − ​wam+1, j = 0}.
Let J = {j|x j

* > 0}.
Let d be a final demand vector producible by J. Then clearly d ∈ {Mx ∈ +

m\{0}|x ∈ +
n, xj ≤ x j for all 

j ∈ W, Am+1x ≤ L, and xj = 0 for all j ∉ J}. 
Let x(d) solve the following linear programming problem:

wA xm� �1 min subject to Mx = d,  −Am+1x ≥ −L,  −xj ≥ −x j for all j ∈ W, x ≥ 0, xj = 0, if j ∉ J.
Since J j x j� � { | }* 0  ={ j ∈ W |x j

* > 0}∪{j ∉ W |x j
* > 0}⸦{j ∈ W |q M j*T − α*am+1, j − ​hj

* — ​wam+1, j = 0}∪ 
∪ { j ∈ W |q M j*T − α*am+1, j − ​wam+1, j = 0} and xj(d) = 0 for all j ∉ J it is clear that [q M j*T − α*Am+1, j −hj

*− 
− wAm+1, j]xj(d) = 0 for all j ∈ W and [q M j*T − α*Am+1, j − ​wAm+1, j]xj(d) = 0 for all j ∉ W.

Hence, the following system of equations and inequalities are satisfied:
a) Mx(d) = d,
b) Am+1 x(d) ≤ L,
c) xj(d) ≤ x j for all  j ∈ W,
d) q M j*T  − α*Am+1, j − ​hj

* ≤ wAm+1, j for all j ∈ W,
e) q M j*T  − α*Am+1, j ≤ wAm+1, j for all j ∉ W,
f) [q M j*T  − α*Am+1, j − hj

* − ​wAm+1, j]xj(d) = 0, for all j ∈ W,
g) [q M j*T − α*Am+1, j − ​wAm+1, j]xj(d) = 0, for all j ∉ W.
Thus x(d) satisfies all the constraints of LP − ​d and q*, α*, <hj

*| j ∈ W > solves all the constraints of the 
DLP − ​d. Further, xj(d) = 0, if j ∉ J.

The value of the objective function of LP − ​d at x(d) is wAm+1x(d) and that of the dual DLP − ​d at q*, 
α*, < hj

*| j ∈ W > is q*Td−α*L − ​
j W

j jh x
�
� * .

From (a) we get q*Td  =  q*TMx(d) and this combined with (f) and (g) gives us 
[ ] .*T * *q d a h x d wA x d

j W
j j m� � � � � � �

�
�� 1
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At this point we invoke an assumption about activities operating up to “full capacity”.
Assumption (about activities using their entire capacity): suppose that {j ∈ W |x j

* = x j}⸦{j ∈ W |xj(d) = x j}.
Now, 

j W
j j

j W x x
j j

j W x x
j jh x d h x d h x d

j j j j� � � � �
� � �� � � � � � � �*

{ | }

*

{ | }

*

* *

.

Clearly 
{ | }

*

*j W x x
j j

j j

h x d
� �
� � � � 0, since hj

* = 0 whenever x xj j
* }< .

Thus, 
j W

j j
j W x x

j jh x d h x d
j j� � �

� �� � � � �*

{ | }

*

*

.

However, {j ∈ W |x j
* = x j}⸦{ j ∈ W |xj(d) = x j}.

Thus, 
j W

j j
j W x x

j jh x d h x
j j� � �

� �� � �*

{ | }

*

*

.

Since 
{ | }

*

*

,
j W x x

j j
j j

h x
� �
� �  0  we get 

j W
j jh x

�
� *  = h x djj W j

* ( )
�� .

We already have, [q*Td − α*L − 
j W

j jh x d
�
� � �* ] = wAm+1x(d).

Substituting 
j W

j jh x
�
� *  for 

j W
j jh x d

�
� � �*  in the above equation gives [ ] .*T * *q d a h x wA x d

j W
j j m� � � � �

�
�� 1

Thus, as is well known in the theory of linear programming, x(d) is an optimal solution for LP − ​d 
and so the answer to the question we have posed earlier is in the affirmative, provided {j ∈ W |x j

* = x j}⸦ 
⸦ {j ∈ W |xj(d) = x j}.

From (d) and (e) we get q M j*T  − α*Am+1, j − ​hj
* ≤ wAm+1, j for all j ∈ W and q M j*T  − α*Am+1, j ≤ wAm+1, j 

for all j ∉ W.
Thus for all j ∈ {1, …, n}, there exists a non-negative real number εj such that q M wA Aj

m j m j j
*

,
*

, .T � � �� �1 1� �

Clearly, εj = hj
* for all j ∈ W satisfying q M j*T  − ​α*Am+1, j − ​hj

* − wAm+1, j = 0 and εj = 0 for all j∉W satis-
fying q M A wAj

m j m j
* *

, , .T  � � �� �� 1 1 0
Let v ∈ +

n be the row-vector whose coordinate j is α*Am+1, j + εj.
Since q M*T  − ​wAm+1 = v, v is profitable at wage rate w.
Hence if M is a weakly productive activity matrix, by Proposition 2 it follows that there exists an equi-

librium price-vector p* at the wage rate w and row-vector v.
Important Note: v depends on q*, α*, <hj

*| j ∈ W > which depends on J. Thus p* depends on the produ-
cibility of d by activities in J and on the assumption {j ∈ W |x j

* = x j}⸦{j ∈ W |xj(d) = x j}.
Hence, as mentioned in the first section, there is a clear dependence of the equilibrium price-vector on 

the final demand vector, unlike the conclusion of Sraffian economics.
This proves the following theorem, which is popularly known as the Non-Substitution Theorem.
Theorem 1. Given a CLAAM ( , )|M x j Wj� � � , suppose that for some producible final demand vector d*, x* 

is an optimal solution for LP − ​d*. Let d be a final demand vector producible by J = {j|x j
* > 0}. Let x(d) be an 

optimal solution for the linear programming problem LP — ​d along with an additional constraint xj = 0 for all 
j ∉ J (i. e., x is producible by J):

wA x s t Mx d A x L x x j W x j J xm m j j j� �� � � � � � � ��1 1 0min . . , , , ,* *       ��  0.
If { | } { | }*j W x j W x d xxj j jj� � � �� � �  (i. e., the capacities that are binding at x* continue to remain binding 
at x(d)), then x(d) solves LP — ​d.

If in addition M is weakly productive, then there exists a price-vector p* known as efficiency price-vector, 
an array of non-negative real numbers <hj

*| j ∈ W> and a real number α* ≥ 0 — ​such that:
i)  p M jT  − wAm+1, j − ​hj

* ≤ α*Am+1, j for all j ∈ W;
ii) p M jT  − ​wAm+1, j ≤ α*Am+1, j for all j ∉ W;

iii) p M jT  − ​wAm+1, j − ​hj
* = α*Am+1, j for all j ∈ W with x j

* > 0;
iv) p M jT  − ​wAm+1, j = α*Am+1, j for all j ∉ W with x j

* >0. ■
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Note. In the statement above, for each j ∈ W, hj
* could be interpreted as the shadow price of operating 

the activity j at unit level. So, the shadow price of any activity that operates below capacity at x* is 0, and 
continues to remain, so even if at x(d) it uses up the entire capacity.

An immediate corollary of Theorem 1 is the following “compact” result valid only for (M, φ).
Corollary of Theorem 1. Given a CLAAM (M, φ), suppose that for some producible final demand vector d*, x* 

is an (a basic) optimal solution for LP − ​d*. Let d be a final demand vector producible by J = { j|x j
* > 0}. Let x(d) 

be an optimal solution for LP − ​d along with an additional constraint “x is producible by J”. Then x(d) solves 
LP − ​d.

If in addition M is weakly productive, then there exists a price-vector p* known as efficiency price-vector 
and a real number α* ≥ 0 — ​such that:

i)  p M jT  − wAm+1, j ≤ α*Am+1, j for all j ∈ {1, …, n};
ii) p M jT  − wAm+1, j = α*Am+1, j for all j with x j

* >0.
Note. In the proof of Theorem 1 presented in the form of a discussion prior to the statements of the two the-

orems, observe that, since x(d) must belong to +
n\{0} and Am+1 >> 0, it must be the case that wAm+1x(d) > 0.

7. MULTISECTOR PRODUCTION THEORY FOR CLAAM

The implications of the above analysis for constrained linear activity analysis models when the m manu-
factured goods are interpreted as m distinct composite commodities in a one-to-one correspondence with m 
distinct sectors of the economy is best performed with a dynamic (two-period) interpretation of the model 
discussed here, with production taking place during the current/first period — ​period 0 and the final demand 
vector is supplied during a subsequent period — ​period 1. In such a situation a CLAAM ( , )|M x j Wj� � �  
corresponds to the specific case where:

a) there exist non-negative m×n matrices B, A such that M = B — ​A;
b) the entries in the matrices B and A are measured in money units evaluated at producer prices.
Thus for I ∈ {1, …, m} and j ∈ {1, …, n}, aij is the cost of good i required to operate activity j at unit level 

and bij is the is the monetary of good i produced if activity j is operated at unit level, both measured in pro-
ducer prices prevailing in period 0.

Issues relating to solvability remain intact — ​the analysis in section four remains unaffected under this 
new interpretation. What however requires some reformulations are issues related to existence of equilib-
rium price vector and as a consequence, issues related to efficiency prices via the non-substitution theorems.

In the first place, instead of price-vector the concept that is relevant in this context is (sectoral) inflation 
rate vectors, i. e., the vector of factors by which the period 0 sectoral price indices are individually multiplied 
to obtain the period 1 price indices.

As in section 5, the amount of the only non-produced good called labour that is used as input as well its 
total initial amount in the economy is measured in physical units.

An inflation rate-vector is a vector p ∈ +
m\{0}. Let w > 0 denote wage rate of labour.

At inf lation rate-vector p and wage rate w the prof it-vector at the pair (p, w)  denoted 
p p w p B e A wAm( ), ,T T� � � �1  where e is the m-dimensional column vector all entries of which are 1; e is 
called the sum-vector.

A row-vector v∈+
n is said to be profitable at wage rate w > 0, if there exists q ∈ m such that 

q B wA e A vm
T T .� � ��1

Note. The vector q in the definition of profitable vectors need not be non-negative.
An inflation rate-vector p is said to be an equilibrium inflation rate-vector at the wage rate w > 0 and row-

vector v ∈ +
n if v = π(p, w).

Instead of the activity matrix being weakly proper, we now require the following property.
Weakly proper Output Coefficient Matrix. Given a CLAAM ( , )|M x j Wj� � �  with M B A� �  for non-

negative matrices A and B, for all p, q ∈ +
m and d∈ CS M x j Wj( |, )� � �  ∩ (+

m\{0}): [pTB ≥ qTB implies 
pTd ≥ qTd].

This allows us to state and prove the following result.
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Result 1. Given a CLAAM ( , )|M x j Wj� � �  with M = B − ​A for non-negative matrices A and B and 
satisfying weakly proper output coefficient matrix property if v is a profitable row vector at wage rate w > 0. 
Then there exists an equilibrium inflation rate-vector p at the wage rate w and row-vector v.

Note that the solvability aspect of the non-substitution theorem, concerns minimization of aggregate 
wages or cost of labour, subject to producibility constraint. Hence that aspect of the non-substitution the-
orem remains intact under the new interpretation. We need to however replace the concept of efficiency 
prices by efficiency inflation rates.

The following result has a proof similar to the one for theorem 1.
Result 2. Given a CLAAM ( , )|M x j Wj� � �  with M = B — ​A for non-negative matrices A and B, sup-

pose that for some producible final demand vector d*, x* is an optimal solution for LP − ​d*. Let d be a final 
demand vector producible by J = { j |x j

* > 0}. Let x(d) be an optimal solution for the linear programming 
problem LP − ​d along with an additional constraint xj = 0 for all j ∉ J (i. e., x is producible by J):

wA x s t Mx d A x L x x j W x j J xm m j j j� �� � � � � � � � ��1 1 0 0min . . , , , , .*     
If {j∈W |x j

* = x j}⸦{ j ∈ W |xj(d) = x j} (i. e., the capacities that are binding at x* continue to remain bind-
ing at x(d)), then x(d) solves LP − ​d.

If in addition the Weakly Proper Output Coefficient Matrix property is satisfied, then there exists an infla-
tion rate-vector p* known as efficiency inflation rate vector, an array of non-negative real numbers <hj

*| j ∈ W > 
and a real number α* ≥ 0 — ​such that:

i)  p B e A wAj j
m j

T T� � ��1,  hj
* ≤ α*Am+1, j for all j ∈ W;

ii) p B e A wAj j
m j

T T� � �1,  ≤ α*Am+1, j for all j ∉ W;
iii) p B e A wAj j

m j
T T� � �1,  − ​hj

* = α*Am+1, j for all j ∈ W with x j
* > 0;

iv) p B e A wAj j
m j

T T� � �1,  = α*Am+1, j for all j ∉ W with x j
* >0.

An immediate corollary of Result 2 is the following compact result valid only for (M, φ).
So, the shadow price of any activity that operates below capacity at x* is 0, and continues to remain, so 

even if at x(d) it uses up the entire capacity.
Corollary of Result 2. Given a CLAAM (M, φ), suppose that for some producible final demand vector 

d*, x* is an (a basic) optimal solution for LP − ​d*. Let d be a final demand vector producible by J = {j|x j
* > 0}. 

Let x(d) be an optimal solution for LP − ​d along with an additional constraint x is producible by J. Then x(d) 
solves LP − ​d.

If in addition Weakly Proper Output Coefficient Matrix property is satisfied, then there exists an inflation 
rate-vector p* known as efficiency inflation rate-vector and a real number α* ≥ 0 — ​such that:

i)  p B e A wAj j
m j

T T� � �1,  ≤ α*Am+1, j for all j ∈ {1, …, n};
ii) p B e A wAj j

m j
T T� � �1,  = α*Am+1, j for all j with x j

* >0.
In the case of final demand for services (provided by the service sector) which do not require manu-

facturing, but are none the less measured in current producer prices, this may imply a difference between 
producer prices and the prices that consumers are required to pay for the services during the current period.
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3 В работе сообщаются новые результаты, обобщаются и расширяются границы анализа, приведенного автором в ран-
ней работе «Анализ производства, основывающийся на матричном представлении операций», доступной на https://drive.
google.com/file/d/15E2SlIb5NeWBgtRI-O1gb1UA9CG6QhJc/view

Аннотация. Цель статьи — ​расширить рамки анализа операций, которые обсуждались в статье 
Антонио Виллара без каких-либо требований к размеру матриц. В его работе была введена мо-
дель анализа операций, в которой операции могут иметь (или не иметь) ограничений по мощ-
ности. Мы применяем обычные приемы анализа затраты–выпуск при определения количества 
товара внешним для сектора производства (или обрабатывающей промышленности) потреби-
телям и рассматриваем его как конечный спрос. Мы получили сходные с А. Вилларом резуль-
таты об алгоритмической разрешимости, незамещаемости и существовании эффективных цен. 
Мы применили наш анализ и результаты к двухпериодной модели анализа многосекторальной 
деятельности с ограничениями по мощности. Матрица операций представляет собой разницу 
между неотрицательной матрицей коэффициентов выпуска и неотрицательной матрицей ко-
эффициентов затрат, при том что коэффициенты были определены в денежных единицах для 
каждого вида деятельности. Почти все результаты, полученные к настоящему времени, пред-
ставлены в таком макроэкономическом контексте. Тем не менее, необходимы некоторые изме-
нения формулировок для проблем, относящихся к существованию равновесного вектора цен 
и — ​как следствие — ​к вопросам, относящимся к эффективности цен через теоремы о незаме-
щаемости. Соответствующие концепции применяются здесь и к векторам уровней инфляции.
Ключевые слова: линейный анализ процессов с ограничениями, разрешимость, теорема о не-
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