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1. INTRODUCTION

The purpose of this paper is to generalize the framework of activity analysis discussed in A. Villar (Vil-
lar, 2003) and obtain similar results concerning solvability. We generalize the model due to A. Villar (Villar,
2003), without requiring any dimensional requirements on the activity matrices and by introducing a model
of activity analysis in which each activity may (or may not) have a capacity constraint i.e., a maximum level
at which the activity can operate. This may be one way to accommodate meaningful non-linearities similar
to that considered for input—output analysis in I. Sandberg (Sandberg, 1973).

In I. Sandberg (Sandberg, 1973), the input-output coefficients were assumed to be differentiable, which
is very likely an approximation of the more realistic and practically applicable representation in which the
input-output coefficients are piecewise constant. Minor, technical increments on the solvability result in
Sandberg (Sandberg, 1973) can be found in P. Chander (Chander, 1983) and some references therein. Un-
doubtedly, piecewise constant input-output constants are more difficult to deal with mathematically than
differentiable ones. Non-linearities are much easier to represent in the framework of linear activity analysis
by introducing upper bounds — whenever there is a capacity constraint for the levels at which each such ac-
tivity may operate. We do this by introducing a model of activity analysis in which each activity may (or may
not) have a capacity constraint. In this paper we follow the usual nomenclature of input-output analysis for
“the quantity of a good supplied to the consumers outside the production (or manufacturing) sector” and
refer it as “final demand”.

It seems that in this significantly more general framework we are able to obtain the desired results con-
cerning solvability and existence of an equilibrium price-vector under weaker assumptions than the corre-
sponding requirements in A. Villar (Villar, 2003). The property that guarantees solvability has the following

! This paper generalizes and extends the framework of analysis as well as the results in an earlier paper by the author entitled “Pro-
duction Analysis for Proper Activity Matrices” (https://drive.google.com/file/d/15E2SIIb5SNeWBgtRI-O1gb1 UAICG6QhJc/view).
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economic interpretation: Given two price vectors p, ¢ a final demand vector and unit prices of operating ca-
pacity constrained activities, if the revenue from operating every unconstrained activity at unit level at price-
vector p is no less than doing the same at price-vector ¢ and if the revenue from operating a constrained
activity at unit level at price-vector p is no less than doing the same at price-vector ¢ plus the unit price of
operating the activity then the value of the final demand at price vector p is no less than the value of the final
demand at price-vector ¢ plus the total cost of the capacities. In the context of the constraint linear activ-
ity analysis model, we call this property “weakly proper”. We also prove a version of the Non-Substitution
Theorem that establishes the existence of “efficiency price-vectors” as a joint product. However, our Non-
Substitutions Theorem — in spite of the generality of our model as compared to the one due to A. Villar
(Villar, 2003) — requires that if there are capacity constraints, then there is a minimal subset of the set of
capacity constrained activities that are always used up to full capacity, for the production of all producible
final demand vectors. Further, these capacity constrained activities are the only ones whose capacities are
binding for some producible final demand vector. Hence there is a clear dependence of the equilibrium price
vector on the final demand vector (i.e. the vector of quantities supplied for non-manufacturing prices); un-
like the conclusion of Sraffian economicsz, and we are able to show this without using production functions.
Our framework is a generalization of the one used in Sraffian economics.

In a concluding section of this paper, we apply our analysis and results to the two-period multisector
activity analysis model with capacity constraints. Production takes place in the current period and the sale
of goods outside the production system, takes place in a subsequent period. The activity matrix is the dif-
ference between a non-negative output coefficient matrix and a non-negative input coefficient matrix, with
the coefficients being measured in money units for each activity. Almost all the results obtained thus far get
replicated in this macroeconomic context. However, some reformulations are required for issues related to
existence of equilibrium price vector and as a consequence, issues related to efficiency prices via the non-
substitution theorems. The corresponding concepts in this application refer to “inflation rate” vectors, i.e.,
“equilibrium inflation rate-vector” and “efficiency equilibrium rate-vector” respectively. In the case of final
demand for services (provided by the service sector) which do not require manufacturing, but are none-the-
less measured in current producer prices, this may imply a difference between producer prices and the prices
that consumers are required to pay for the services during the current period.

In what follows we will be making extensive use of mathematical results in Topics 2 and 3 — and there-
fore by implication results in Topic 1 — of Lahiri (Lahiri, 2022). Sometimes, when there is no scope for
confusion, given two vector/points x and y in a real Euclidean space of the same dimension we use x > y to
denote that every co-ordinate of x is greater than or equal to the corresponding coordinate of y, x > y to de-
note x >y, but x # y (x is not equal to y), and x >> y to denote every coordinate of x is strictly greater than
the corresponding coordinate of y.

2. MOTIVATION

Consider a very simple production process which produces a single output (“corn”) from a single input
(once again “corn”). In the classical or Leontief Input-Output (I0) Model one assumes that there exists a
fixed positive constant @ such that ax units of corn are required to produce x units of corn. The production
process is productive if and only if 0 < a < 1. However, in reality the assumption of a fixed input-out coef-
ficient a is unrealistic. Fertility of the soil is not uniform. Hence, it is unreasonable to assume that input-
output coefficient remains constant for all levels of output.

Sandberg (Sandberg, 1973) suggested that the input-output coefficient(s) is(are) a differentiable function(s)
of the gross output. Once again, differentiability of input-output coefficient appears to be an “unrealistic” as-
sumption for actual production processes. Even if such an assumption is theoretically true, it is extremely dif-
ficult to invoke it for practical use in “production planning”. It is perhaps more realistic to assume that input-
output coeflicients are piece-wise constant. In what follows we generalize such an assumption and develop the
theory that follows from it to the case of production with possibly more than one good.

The Sraffian conclusion of market prices being independent of the quantity “supplied” (which is referred
to in the literature on input-output analysis as “final demand”) with fixed input-output coefficients and hence
fixed unit costs of production with competitive factor markets, is not unreasonable at all in the “one good”
setting, since that is precisely what is indicated by the intersection of any demand curve with a horizontal
marginal cost (or perfectly competitive supply curve). However, in the more general setting with piece-wise

2 See the sixth paragraph at: https://www.rethinkeconomics.org/journal/sraffian-economics/

OKOHOMUKA U MATEMATUYECKUWE METOAbI TtomM59 Nel 2023



PRODUCTION THEORY FOR CONSTRAINED LINEAR ACTIVITY MODELS 7

constant input-output coefficients or piece-wise constant marginal cost functions, neither would the associated
extension of the Sraffian linear model indicate such independence between market price and quantity supplied
and nor would it be implied by the intersection of the market demand and marginal cost curves.

3. THE MODEL

Consider an economy with m produced goods indexed by i = 1, ..., m and » activities indexed byj =1, ..., n.
An mXn matrix of real numbers is said to be non-zero, if it has “at least one non-zero entry”.
Note. The rank of a non-zero matrix is a positive integer.

Let M be a non-zero mXn matrix of real numbers called an activity matrix the column j of which denoted
M/ forj e {1, ..., n} denotes the amount of net output of each good if the activity j is operated at unit level.
Thus for / € {1, ..., m} and j € {1, ..., n}, the entry i of M/ denoted m;; denotes the net output (of the pro-
duced good i if the activity j (or activity /) is operated at unit level. If my; is negative, then —m;; is the amount
of the produced good i used as net input, if the activity j is operated at unit level.

In what follows, unless otherwise stated, we shall use net output and output interchangeably. The same
applies for net input and input.

An activity-vector is a column vector x € R” such that for all j € {1, ..., n}, the row j (or coordinate) of
x, denoted x;, is the level at which activity j is operated.

A constrained linear activity analysis model (CLAAM) is a pair (M,<X, | jeW >) where M is an mxn ac-
tivity matrix and if W= ¢ then < )_c/. | jeW >is an array with )?j e R being the maximum level at which ac-
tivityj € W {1,..., n} can operate, the possible levels of operation for activities in (1, ..., #}\ W being unbound-
ed above. If W= @, then a constrained linear activity analysis model with activity matrix M is (M, @).

In the case of (M, ¢) no activity has a capacity constraint.

Note. This is a very general formulation. In particular there could be non-negative mXn matrices B, A
such that M = B — A.

A column vector d € R”\{0} is said to be a final demand vector if for all i € {1, ..., m}, row i of d, i.e. d;
represents the quantity of good supplied i for non-manufacturing/non-production purposes, i.e. quantity
of the good supplied i to the consumers outside the production process.

The following is an example of an activity matrix, different from any in A. Villar (Villar, 2003) and any
known to us otherwise (see chapters 6 and 7 of K. Lancaster (Lancaster, 1968)).

Example 1. Let Cbe a nxn matrix of non-negative real numbers such that for all /, je{l, ..., n}, ¢; which
is the element (7, j) of C, is a non-negative real number that denotes the level at which activity i is required
to be operated — to produce enough of the m produced goods — so as to be able to operate activity j at unit
level. Let B be a mxn matrix of non-negative real numbers such that forall 4 € {1, ..., m} and I € {1, ..., n},
by,; is the element (4, i) of B, denoting the (net) amount of good 4 that is produced with the purpose of sat-
isfying final demand, if activity / operates at unit level.

Let M = B(I-C).
If x € R” satisfying x; < )?j forallj e W, if W= ¢ and unconstrained otherwise, is an activity-vector then

Cx denotes the level at which the activities are required to operate in order to “operationalize” the activity
vector x. The remaining levels of activity vector (/—$5)x are used to produce the “produced goods” in the
amount B(/—C)x, provided (/-C)x € R".

In what follows, unless otherwise stated or required, we will write (M, < )?j | j e W >) to represent a CLAAM,
with the implicit understanding that if W = ¢, then the CLAAM reduces to or represents (M, @).

The following definition will prove to be important in the analysis that follows.
A price-vector is a vector p € R”\{0} where the coordinate i of p, denoted p; is the unit price at which the

produced good i is sold in the market. Let w > 0 denote wage rate of labour.
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4. SOLVABILITY OF CLAAM

Given a CLAAM (M ,<X.|jeW >) and a non-empty subset of activities J, we define the set Constrained
Span (M,<X, ljeW > J), denoted CS(M <X, |jeW >,J) = {Mx € R"lx € R" with x; < X <X, forj e Wand
X; —Oforallj ¢ J}.

Thus, CS(M <X, | jeW >,J) c Span (M, J).

IfJ={1, ..., n}, then CS(M <X, | jeW >,J) is written simply as CS(M ,< X, |jeW >).

Let J be a non-empty subset of {1,..., n}.

The content of the following property is based on one due to Villar (Villar, 2003).

A CLAAM (M ,< x | jeW >) is said to be weakly proper for (a non-empty subset of activities) J, if for
all p, g € R”, any array of non-negative real numbers <a., |jeWnJ> andd € CS(M, <X, |jeW >N

N (R™\{0}): [pTM/ — ;> q"M/ forallj e WnJ and pTM/ >q"M/ forall j e J\Wlmplles pld —
- Z/eWﬂJ x 2 q d]

We use (CLAAM (M, <X, | j eW >) as weakly proper for J and (M, <x | jeW >) is a CLAAM weakly
proper for J, or just (M ,< x ! jeW >,J) is weakly proper for J 1nterchangeably

Weakly proper in the context of CLAAM has the following economic interpretation (if we interpret o
as the unit cost of operating a capacity constrained activity je WnNJ):

if the revenue from operating every unconstrained activity in J at unit level at price-vector p is no less
than doing the same at price-vector ¢ and if the revenue from operating a capacity constrained activity in J
at unit level at price-vector p is no less than doing the same at price-vector ¢ plus the unit price of the ca-
pacity then the value of the final demand d at price vector p is no less than the value of the final demand d
at price vector ¢ plus the total cost of the capacities.

In the interpretation provided above we are assuming that capacities have an imputed price/shadow price
given by the alphas up to the maximum that is possible.

A CLAAM (M < x |jeWw >) is said to be weakly proper if it is weakly proper for {1, ..., n}.

In partlcular (by settmg a; =0 for allj e W) forall p, g € R" and d € CS(M <X, |]eW> J)n
N(R™M\{0}): [p'M=>gq M1mp11esp d>q'd).

Given a CLAAM (M ,< x | jeW >) the act1v1ty matrlx M is sa1d to be weakly proper if for all p, g € R”
andd € CS(M, <x |j€W> J)N (R™{0}): [p M>q Mlmphesp d>q d].

Clearly the act1v1ty matrix M is weakly proper if the CLAAM (M ,< xj |jeW >) is weakly proper.

Since any point in R” can always be expressed as the difference between two points in R” the following
is an immediate consequence of the definition of a weakly proper activity matrix.

CLAAM (M < x | j eW >)is weakly proper for J if and only if for all p € R'" any array of non-negative

real numbers <a.; |jeWmJ> and de(CS(M <X, | jeW >, J)N(R™{0}): [p"M— a; >0 forallj e WNnJ,
pIM/ >0 for allj e \W, implies p'd — Z/ ey O x >0].

Note. The definition corresponding to weakly proper activity matrices in A. Villar (Villar, 2003) is equiv-

alent to our definition of weakly proper activity matrices of CLAAM’s because A. Villar (Villar, 2003) re-
quires Span (M)N R” # @.

Lemma 1. Suppose CS(M, <X, |jeW > J)NR" # @. Then (M, <X, | jeW >) is a weakly proper CLAAM
Jor Jif and only if Vp,qeR” any array of non- negatlve real numbers < (x |jeWnJ>andd e CS(M)N R™
[p™™M — o, >q"MINVjeWnJand p" M >q" M/ V]eW\JlmpllespTd z s & X 2q Td).

Proo f If (M,< x | jeW >) is a weakly proper CLAAM for J, then it is easy to see that Vp,qeR” , any
array of non- negatlve real numbers <a, |jeWnJ> and d € CS(M, <x |j€W> J)ﬂ R’" :
[p"™M/ - o, >qg" M/ NjeW nJ and p"™M/ >qTMf VjeW\J implies p'd — Z ewes

Hence suppose that Vp,geR” , any array of non-negative real numbers <o |jeW nJ> and
d e CS(M,<X, |j€W> JYNnR”:[p TMf—a/.ZqTMf VieWndJ and p"™M/ >q"™ M/ VjeW \J implies

pld— Z]ijocx >q'd]. '

ocx_qd]
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Then as in the case of weakly proper CLAAM’s for J, we get in this case that for all p € R”, an ar-
ray of non-negative real numbers <a., |jeWnJ>and deCS(M, <X, |jeW > H)NR": [p"M/ —0;>0
NjieWnJ, p"™M7>20VjeW \J, implies pTd - Z ,o,X,=0].

Suppose deCS(M,<X, | jeW >,J) N (R™{0}).
By hypothesis CS(M,<)?/, |jeW>J)n R™ # @. Let d*eCS(M,<)?j |jeW>J)n R™ .
Now d'e CS(M,<%,| jeW >J)NR” implies td € CS(M,<X, | jeW >.J) N R" forall 127>0.

Slmllarly,deCS(M <x |jeW >, J) N R” implies (1— t)d+td e CS(M, <X, |jeW >J)nR" forall
1>2¢>0.

Thus, d € CS(M ,< )?j ljeW>J)n R™ implies (1-7)d + id e CS(M)NR” forall 1=7>0.

Let < t(h)|h e N > be a sequence of positive real numbers less than or equal to 1, converging to 0.
Clearly, the sequence < (1—")d + t(h)d*|h e N> convergestodand forallz e N, pT((1-t")d +t"d")>0.
Thus p'd > 0.

Thus, (M,< )? | jeW >) is a weakly proper CLAAM for J. =

Proposition 1. (M < x | j e W >) is a weakly proper CLAAM for J if and only if for all final demand vectors
de CS(M, <x |jeW > J)there exists xe R” satisfying Mx = d, x; < x forj e WnJandx;= 0 forallj ¢ J.

Proof. Let d be a final demand vector in CS(M, <x | j eW > J) For d = 0, clearly Mx = d, where
x = 0 and further x; < X, forj € W. Hence, we may suppose that d e CS(M, <X, |j W >, J)NR” \{O}

(M, <x |jeW >)is weakly proper for J if and only if there does not ex1st peR™, any array of non-
negative real numbers <o, |jeWnJ>and deCS(M, <x |jeW >,J) N R" satisfying p"™M/ - a, >0
YieWnd, pTMf>0V]eW\Janded Z ,0X, < 0.

Hence by Farka’s lemma, (M, < x |jeW >)is weakly proper for Jif and only if Mx =d, x € R, x; < )?j
forj e WnJandx; =0 for 3.11] ¢ J has a solution. =

Note. Nowhere have we invoked any restriction on the size of the activity matrix or its rank, except that
the rank of the activity matrix is positive. That leaves out the uninteresting case of M = 0. Thus, our frame-
work is considerably more general than that of Villar (Villar, 2003).

An immediate consequence of the proposition above is that the requirement of #» < m in Villar (Villar,
2003) can be dispensed with not only for solvability problem in activity analysis, but also for the non-sub-
stitution theorem (theorem 5) in the same paper.

5. EXISTENCE OF EQUILIBRIUM PRICE-VECTOR
We will now present a similar generalization as above for the existence of an equilibrium price-vector for
a CLAAM (M,<X, |jeW >).

Let A,,+; be a row vector in R” with all co-ordinates strictly positive, where the entry in the colomn j
denoted A+, j i > 0, is the amount of the only non-produced good called “labour” that is used as input if
activity j is operated at unit level. Let L > 0 be the total initial amount of labour in the economy.

Recall that a price-vector is a vector p € R”\{0}. Let w > 0 denote wage rate of labour.

At price-vector p and wage rate w the profit-vector at the pair (p, w) denoted n( D, w) =p'M-wA_ .
Arow vector v € R” is said to be profitable at wage rate w > 0, if there exists ¢ € R” such that qTM =wA,,+1 TV
Note. The vector ¢ in the definition of profitable vectors need not be non-negative.

A price-vector p is said to be an equilibrium price-vector at the wage rate w > 0 and row-vector veR” if

v=a(p, w).

Recall that an activity matrix M is said to be weakly properif forall p, ¢ € R7and d € CS(M,<X | jeW >,J)N

N(R™{0): [p"M = ¢" M implies p'd > ¢"d).

Proposition 2. Given a CLAAM (M, < )?j | jeW >), suppose M is a weakly proper activity matrix and

v is a profitable row vector at wage rate w > 0. Then there exists an equilibrium price-vector p at the wage
rate w and row-vector v.

OKOHOMUKA U MATEMATUYECKHWE METOAbBI TtomM59 Nel 2023
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Proof Sincew>0,4,,;; >> 0andv >0, we get wA,,.; +v>>0.
Since v € R” if there exists p € R” such that pTM = WA, T v, then it must be the case that p € R”\{0}.
Since v is profitable at wage rate w > 0, there exists ¢ € R” such that qTM =wA,,+1 T V.

Towards a contradiction suppose that there does not exist p € R” such that pTM = WwA,,+1 T v. By Farkas’
lemma, there exists x € R” such that Mx € R” and (wA,,,+; + v)x <0.

Since M is weakly proper, Mx € R” implies that there exists y € R” such that My = Mx > 0.

Now qTM: WwA,,+1 +v>>0andy >0 implies qTMy = WA,,;+; Tv)y=0.

Thus My = Mx implies ' Mx = g' My = (WA, | + v)y > 0.

On the other hand ¢" M = wA,,+1 + v implies g Mx = (wA,,,+1 + v)x <0, contradicting q"Mx > 0, that
we obtained above.

Thus there exists p € R” such that pTM = wA, 4+ T vand as we observed earlier this p € R”\{0}. =

6. NON-SUBSTITUTION THEOREM

Recall that a final demand vector is a column vector d € R™\{0}.

Let J be a non-empty subset of {1, ..., n}.

Given a CLAAM (M ,< x |jeWw >) a final demand vector d is said to be producible by (activities in) J
if there exists x € R” satlsfylng Mx=d, A,+1x < L, X <X X, forallj e W, and x; = 0 for allj ¢ J. Clearly any
such x must belong to R”\{0}.

It follows from proposition 1, that if (M, < x | jeW >) is weakly proper for J, then any final demand

vectord € CS(M,< x |jeW >, J ) is producible by J, provided the requirement of labour to produce it does
not exceed L.

If /= {1, ..., n}, then a final demand vector producible by J is said to be producible.

Hence the set of all final demand vectors producible by J is {Mx € R"\{0}x € R”, x x forallj e W,
Ap1x < L, and x; = 0 for allj ¢ J}.

Given a price-vector p, a wage rate w > 0, a producible final demand vector d, and x € R” satisfying
Mx = d, the aggregate profit of the production sector is pTd — wA,,+1x. If the production sector intended
to maximize profit, then it would be required to solve the following profit maximization problem: Find x to
solve pTd — wA  x—> max subjectto Mx=d, A\ x< L, X; < )?j forallje W,x=>0.

However, given the price-vector p and w, the above for a producible final demand vector is equivalent to
solving the following linear programming problem denoted LP — d:
wA _ x—> min subject to Mx = d, —A,41x>— L, - x;=— X, forall jeW, x> 0.
If y solves LP — d theny > 0 since d > 0. Thus 4,1y > 0.
The question that we are interested in is the following: If for some producible final demand vector, x is
an optimal solution for the minimization problem, then is it the case that for all final demand vectors pro-

ducible by { Jl x; > 0}, there exists an optimal solution for the minimization problem, such that the activities
operated at a positive level at this optimal solution is a subset of { Jl x’; > O}?

Given a producible final demand vector d, the dual of LP — d denoted DLP — d is the following linear
programming problem: find ge R™, an array of non-negative real numbers < hj | jeW > and a real number
a > 0 to solve:

q7d—ol - Z h X ,— max subject to qTMf —ad,  —h <wA  foralljeW,

m+l,j +1,j

M/ —0d  <wA ‘V’jeEW

m+l,j m+1
Suppose there exists a producible final demand vector d and letx be an optimal solution for LP — d. By
the Weak Duality Theorem for LP, there exists q € R™, an array of non-negative real numbers < h |jeW >
and a real number o > 0 such that:

D) q TM{ ~ @ Ay~ < WA,y jforallje W,
1) ¢ W =& Ay ;< WAy forallj & W,
D) [¢ ™™ — @A,y = B = WA,y ] x) =0 forallj g W,

OKOHOMUKA U MATEMATUYECKUWE METOAbI TtomM59 Nel 2023
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V) (¢ TM — o Apyey j— WAy | x;=0forallj e W,
VYMx =d,
VI) @' [A,x — L]1=0
VI x' <X, VjeW,
VI [x)-%,1=0 VjeW,
IX) [¢7d" —a'L=) 0% ]=wA, X"
Since by (V) Mx = d’, (I11), (IV) and (V1) implies [¢Td" —o'L~Y" K" x |=wA, x"

[¢7Td" —a"L - z Wh,x,] wA_ x" combined with (VIII) implies [¢ Td _O‘*Z_Z/EW h*j,)_cj] =wA X",
which is (IX).

Thus, (I1I), (IV), (V), (VI) and (VIII) implies (IX).
Hence the required system of equations and inequalities are:
g™ — a:AmH,j — I, < WA,y jforallje W,
) g™ M/ —a Ay j < WA,y jforallje W,
D) [qTM7 — o Ayyyy j = h = WA,y ;1 X, =0forallj e W,
IV) [§TM7 — 0 Ayyyy j— WAy 1 X5 =0 forallj & W,
V) Mx = d*,
V) @'[4,x — L1 =0,
VID) x; < X, forallj e W,
VIII) [x* —f] h*_ 0forallj e W,
sinced >0, {j e W|x >0} <
e Wi > 0) < U & WlgT™Mi= o apsy ,— e = 0).

*
*T j — — L — .
g M/ —aayy hj Way1, ;= 0},

Let d be a ﬁnal demand vector producible by J. Then clearly d € {Mx € R"\{0}}x € R", x <X, for all
je W, Ayx< L, and x; = 0 for allj ¢ J}.

Let x(d) solve the following linear programming problem:
wA _ x —min subject to Mx = d, —A,, 11X > —L, X2 X, forallje W,x>0,x;=0, ifj ¢ J.
Since J = {j|x] >*O} ={je WIx;>0lufj ¢ Wx; > 0}c{j e qu TMi—d'a,.,, g — Waty 41, j = Op
ufje Wig'™'—a a,, T Wayt =0} andx(d) 0 forallj ¢ J it is clear that [¢"TM /— a Am+1 J hj—

— WAy jlx(d) = 0 forallj e Wand [¢""M/— a Am+1 WAy jlx(d) =0 forallj e W.

Hence, the following system of equations and inequalities are satisfied:

a) Mx(d) =d,

b) A,,+1x(d) < L

¢) xi(d) <X, forall je W

d) g M)~ Ay < WA, forallj e W,

e)qg ™M/ — a*AmHJ S WAy, jforallje W,

DM/~ Ayer ;=B = WA, Jx(d) =0, forallj e W,

2 g ™M/~ Ay wAm+1 Jxi(d) =0, forallj & W

Thus x(d) satisfies all the constraints of LP — d and q a , <h | j € W> solves all the constraints of the
DLP —d. Further, x(d) =0, ifj ¢ J.

The value of the ObjCCthe function of LP — d at x(d) is wA,,+1x(d) and that of the dual DLP —d at q ,
o ,<hlje W>isq d—ao' L — th

From (a) we get ¢ Ta’ = q TMx(al) and this combined with (f) and (g) gives us
[q*Td—a*—Zh;x( N=wA_ x(d).

jew
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At this point we invoke an assumption about activities operating up to “full capacity”.
Assumption (about activities using their entire capacity): suppose that {j € W|x;f =Xxjc{je Wi(d) = X}

Now, Zh;xj(d): > h;ij(d)Jr > h;xj(d).

jew {_/'eW\x;<7cj} {jeW|x;:7cj}
Clearly Z hjxj (d) =0, since hj = 0 whenever x; < xj}.
{j€W|xj<)?j}
Thus, Zhjxj (d)= hx, (d).
Jjew {jerx;.:fj}

However, {j € W|xj =X}c{je Wik(d) = X}

Thus, ' hix (d)= 3 KX,

jew {jeWx;=x;}
Since Z h X, = 0, we get Zh X, = Zjewh;xj(d).
{/eW\x <X; ’
We already have, [ Td—o L — Zhjxj( N = wA,, 1 x(d).
JjeWw
Substituting Zh x . for Zh X, ( ) in the above equation gives [¢"Td —a" — Zh/’f)?/] =wA,_x(d).
Jjew jew ’

Thus, as is well known in the theory of linear programming, x(d) is an optimal solution for LP —d
and so the answer to the question we have posed earlier is in the affirmative, provided {j W|x =X, }c

c{]eWij(d)—x}

From (d) and (e) we get ¢"T M/ — a*AmH,j - h; S WAy, jforallj e Wand g "M/ — a*AmH’j S WAy 41,
forallj ¢ W.

Thusforallj e {1, ..., n}, there exists a non-negative real number ¢; such that qgTMI - wA ;=a Am+1 STE
Clearly, ¢, = h; forallj € W satisfying ¢"TM/ — oc*AmH,j - h/*, — WA+, ;= 0andg; = 0 for all j¢ W satis-
fying g "M/ -’ A, ;—wA, =0

Let v € R” be the row-vector whose coordinate j is oc*AmH, iteE
Since ¢""M — wA,,, = v, v is profitable at wage rate w.

Hence if M is a weakly productive activity matrix, by Proposition 2 it follows that there exists an equi-
librium price-vector p at the wage rate w and row-vector v.

Important Note: v depends on q a , <h | j € W> which depends on J. Thus p depends on the produ-
cibility of d by activities in J and on the assumptlon {je W|x =X}c{je Wi(d) = x i+

Hence, as mentioned in the first section, there is a clear dependence of the equlllbrlum price-vector on
the final demand vector, unlike the conclusion of Sraffian economics.

This proves the following theorem, which is popularly known as the Non-Substitution Theorem.
Theorem 1. Given a CLAAM (M < x | j eW >), suppose that for some produczble ﬁnal demand vector d , x'

optimal solution for the lmear programmzng problem LP — d along with an addltlonal constramtx = 0 for all
j & J(ie, xis producible by J):

WA, x—min st Mx =d', A x<L, x <x, VjeW, x,=0 VjeJ, x 2 0.

If{jeWw |x =X, }c {jeW|x. ( ) )?j} (i.e., the capacities that are binding at x continue to remain binding
at x(d)), then x(d) solves LP 2 d.

If in addition M is weakly productive, then there exists a price-vector p " known as efficiency price-vector,
an array of non-negative real numbers </’ | j € W> and a real number a > 0 — such that:

i) p"M/ — WAy~ ,- ocAmH,J for allj e W;

i) pTM/ —wA,1 ;< (X*Amﬂ,j forallj ¢ W,
iii) pT M/ —wA, 4y —h;f = ocAmH jforallje Ww1thx >0;
iv) pTM/ = WAy ;= a Amﬂ jforallj e Wwith x; *>0. m
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Note. In the statement above, for eachj € W, h could be interpreted as the shadow price of operatmg
the activity j at unit level. So, the shadow price of any activity that operates below capacity at x* is 0, and
continues to remain, so even 1f at x(d) it uses up the entire capacity.

An immediate corollary of Theorem 1 is the following “compact” result valid only for (M, ).

Corollary of Theorem 1. Given a CLAAM (M, @), suppose that for some producible final demand vector d x
is an (a basic) optimal solution for LP — d". Let d be a final demand vector producible by J = {jix* o> 0}. Let x(d)
be an optimal solution for LP — d along with an additional constraint “x is producible by J”. Then x(d) solves
LP—d.

If in addition M i§ weakly productive, then there exists a price-vector p* known as efficiency price-vector
and a real number a > 0 — such that:

D) pTMI — WAy ;< a*A,,,H jforallje {1, ..., n};

i) pTM/ —wA —a'A

Note. In the proof of Theorem 1 presented in the form of a discussion prior to the statements of the two the-
orems, observe that, since x(d) must belong to R"\{0} and 4,,,,; >> 0, it must be the case that wA,,,, ;x(d) > 0.

for all j with X, >0

m+l1,j m+l1,j

7. MULTISECTOR PRODUCTION THEORY FOR CLAAM

The implications of the above analysis for constrained linear activity analysis models when the m manu-
factured goods are interpreted as m distinct composite commodities in a one-to-one correspondence with m
distinct sectors of the economy is best performed with a dynamic (two-period) interpretation of the model
discussed here, with production taking place during the current/first period — period 0 and the final demand
vector is supphed during a subsequent period — period 1. In such a situation a CLAAM (M ,< x |jeW >)
corresponds to the specific case where:

a) there exist non-negative m>n matrices B, A such that M = B — A;
b) the entries in the matrices B and 4 are measured in money units evaluated at producer prices.

Thusfor I € {1, ..., m}andj € {1, ..., n}, a;is the cost of good i required to operate activity j at unit level
and b,-j is the is the monetary of good i produced if activity j is operated at unit level, both measured in pro-
ducer prices prevailing in period 0.

Issues relating to solvability remain intact — the analysis in section four remains unaffected under this
new interpretation. What however requires some reformulations are issues related to existence of equilib-
rium price vector and as a consequence, issues related to efficiency prices via the non-substitution theorems.

In the first place, instead of price-vector the concept that is relevant in this context is (sectoral) inflation
rate vectors, i.e., the vector of factors by which the period 0 sectoral price indices are individually multiplied
to obtain the period 1 price indices.

As in section 5, the amount of the only non-produced good called labour that is used as input as well its
total initial amount in the economy is measured in physical units.

An inflation rate-vector is a vector p € R™\{0}. Let w > 0 denote wage rate of labour.

At inflation rate-vector p and wage rate w the profit-vector at the pair (p, w) denoted
p(p,w)=p'B—e"A-wA__, where e is the m-dimensional column vector all entries of which are 1; e is
called the sum-vector.

A row-vector veR” is said to be profitable at wage rate w > 0, if there exists ¢ € R” such that
q"B=wA  +eTA+v.

Note. The vector ¢ in the definition of profitable vectors need not be non-negative.

An inflation rate-vector p is said to be an equilibrium inflation rate-vector at the wage rate w > 0 and row-
vector v € R” if v = zt(p, w).

Instead of the activity matrix being weakly proper, we now require the following property.

Weakly proper Output Coefficient Matrix. Given a CLAAM (M ,<X .| jeW >)with M = B - A for non-
negatlve matrices 4 and B, for all p, ¢ € R” and de CS(M, <x | j eI/I/>) N (R™{0}): [pTB >q B implies

p'd>q'd).
This allows us to state and prove the following result.
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Result 1. Given a CLAAM (M, < )?j | jeW >) with M = B — A for non-negative matrices A and B and
satisfying weakly proper output coefficient matrix property if v is a profitable row vector at wage rate w > 0.
Then there exists an equilibrium inflation rate-vector p at the wage rate w and row-vector v.

Note that the solvability aspect of the non-substitution theorem, concerns minimization of aggregate
wages or cost of labour, subject to producibility constraint. Hence that aspect of the non-substitution the-
orem remains intact under the new interpretation. We need to however replace the concept of efficiency
prices by efficiency inflation rates.

The following result has a proof similar to the one for theorem 1.

Result 2. Given a CLAAM (M ,< xj |jeW >) w1th M B — A for non-negative matrlces A and B, sup-
pose that for some producible final demand vector d x isan optimal solution for LP — d'. Let d be a final
demand vector producible by J = {j |x > 0}. Let x(d) be an optimal solution for the linear programming
problem LP — d along with an additional constraint x;=0forallj ¢ J(i.e., x is producible by J):

WA x—>min st Mx=d", A x<Lx <X, VjieW, x—O VJEJ x>0.

If {je W|x =X }c{ je Wij(d) =X } (i.e. the capacities that are blndlng atx continue to remain bind-
ing at x(d)), then x(d) solves LP —d.

If in addition the Weakly Proper Output Coeflicient Matrix property is satisfied, then there exists an infla-
tion rate-vector p known as efficiency inflation rate vector, an array of non-negative real numbers </, | je W>
and a real number o > 0 — such that:

i) p"B/ —eTA/-wA —h < a'A

a—h m+1,; forallje W,
ii) p"B/ —eT A/ —wA

N a*AmHJ forallj ¢ W,

m+l,j
iii) pTB/ —eTA/ L h; =aqa Amﬂ jforallj e Wwith x >0;
iv) pTB/ €T A/ —wA, | = a'A,, ;forallj ¢ Wwith x’>0.

An immediate corollary of Result 2 is the following compact result valid only for (M, @).

So, the shadow price of any activity that operates below capacity at x* is 0, and continues to remain, so
even if at x(d) it uses up the entire capacity.

Corollary of Result 2. Given a CLAAM (M ®), suppose that for some producible final demand vector
d , X is an (a basic) optimal solution for LP — a’ Let d be a final demand vector producible by J = {]|x > 0}.
Let x(d) be an optimal solution for LP — d along with an additional constraint x is producible by J. Then x(d)
solves LP —d.

Ifin add1t1on Weakly Proper Output Coefficient Matrix property is sa‘usﬁed then there exists an inflation
rate-vector p known as efficiency inflation rate-vector and a real number a" =0 — such that:

i) p"B/—e"A/—wA <« A

+1,j m+l1,j
ii) pTB/ —eTA/—wA, | .= o A, ;forallj with X; >0.

m+l,j

forallj e {1, ..., n};

In the case of final demand for services (provided by the service sector) which do not require manu-
facturing, but are none the less measured in current producer prices, this may imply a difference between
producer prices and the prices that consumers are required to pay for the services during the current period.
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Aunnoramus. Llexb cTaTb — paclIMpUTh paMKK aHAIU3a OIfepalnii, KOTOpble 0OCYXKIANNCh B CTaThe
AHTOHMO Buinapa 6e3 kakux-1m6o TpedboBaHMIA K pa3Mepy MaTpuil. B ero pabore Oblita BBeieHa MO-
JIENTb aHAJIN3a OIlepalliii, B KOTOPOI OIEpallii MOTYT UMETH (M He UMETH) OrpaHUYEHII TI0 MOIII-
HOCTU. MBI IpUMEHsIEM OOBIYHBIE TIPHEMBI aHAIM3a 3aTPAThI—BBITYCK ITPU ONPENETEHUST KOJTMIECTBA
TOBapa BHEUITHUM JIJIs CEKTOpa MPOU3BOACTBA (MM 00padaThIBarOIIECii TPOMBIIIIECHHOCTH) MOTPEOU -
TEJISIM M pacCMaTPUBAEM €0 KaK KOHEUHBIN cripoc. MbI MOJYYMIN CXOAHbIe ¢ A. Buiapom pesyib-
TaTBl 00 aJITOPUTMUYECKOI paspelInMOCTH, HE3AMEAEMOCTI M CYIIECTBOBAHNM 3(P(PEKTUBHBIX 1IEH.
MBI IPUMEHWIIN HAIIl aHAJIU3 U PE3YJIBTAThI K IBYXIIEPUOIHON MOIETN aHAIN3a MHOTOCEKTOPATbHOM
NEeSITeIbHOCTU C OTPaHUYCHUSIMU 110 MOIITHOCTU. MaTpulia orepaiiuii mpeacTapiseT co00il pasHUILY
MEXIY HEOTPULATEILHOM MaTpulieil KO3 (PUIIMEHTOB BBIITyCKa U HEOTPULATEILHON MaTpULIEil KO-
5 GULIMEHTOB 3aTparT, IIPU TOM YTO KOI(POUIINEHTHI OBUIM ONIPENETIeHb B JEHEXKHBIX eIMHUIIAX TSI
KaXXIOro BUJA JeaTeIbHOCTH. [ToYTH Bee pe3y/IbTaThl, MOJydeHHBbIE K HACTOSIIEMY BPEMEHU, TPEI-
CTaBJIEHBI B TAKOM MaKpOKOHOMMUYECKOM KOHTEKCTe. TeM He MeHee, HeOOXOAUMBI HEKOTOPbIE U3Me-
HeHUsT GOPMYJIUPOBOK ST IIPOOJIEM, OTHOCSIIIMXCS K CYILIECTBOBAHUIO PABHOBECHOI'O BEKTOPA LIEH
M — KaK CJIEJICTBIE — K BOIIPOCAM, OTHOCIIIINMCS K 3(D(HEKTUBHOCTHU IIEH YepPe3 TEOPEMBI O HE3aMe-
maeMocTi. COOTBETCTBYIONINE KOHIIEMIINNA MPUMEHSIOTCS 31€Ch ¥ K BEKTOpaM YPOBHEN MH(MIALINN.

Kiro4yeBbie ciioBa: JIMHEHHBINA aHAIN3 MTPOLIECCOB C OTPaHUYEHUSIMU, PA3PELIMMOCTh, TeEOpeMa O He-
3aMeIaeMoCcT, 3(PhEeKTUBHBIE LICHBL.
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