МАТЕМАТИЧЕСКИЙ АНАЛИЗ ЭКОНОМИЧЕСКИХ МОДЕЛЕЙ

ОЦЕНКА ПОГРЕШНОСТИ МЕТОДА АНАЛИЗА ИЕРАРХИЙ

© 2014 г. И.Л. Томашевский

(Архангельск)

Рассмотрен некоторый ε-деформированный измерительный процесс, эквивалентный процесдуре вычисления приоритетов в методе анализа иерархий (МАИ). Методами теории измерений проведен анализ этого процесса. В результате получены простые оценки для погрешности вычислительной процедуры МАИ.

Ключевые слова: метод анализа иерархий, МАИ, погрешность.

Классификация JEL: C43, C44.

1. ОБЩИЙ ПОДХОД К ИЗМЕРЕНИЯМ, ε-ДЕФОРМИРОВАННЫЕ ИЗМЕРЕНИЯ

Метод анализа иерархий (МАИ), предложенный Т. Саати около тридцати лет назад, продолжает находить широкое применение при моделировании и анализе различных социальных, психологических и экономических ситуаций и проблем, обусловленных факторами, не поддающимися точному математическому определению, но допускающими попарное сравнение. Количественная оценка значимостей, или приоритетов, любых сравнимых факторов G_1 ..., G_n по отношению к вопросу, требующему анализа, осуществляется в МАИ с помощью матрицы парных сравнений (Саати, 2008, § 2.9; Saaty, 2008) с матричными элементами

$$a_{ik} = \frac{$$
значимость фактора G_i , $i = k = 1, ..., n$.

А именно, значимости факторов находятся как компоненты собственного вектора, соответствующего наибольшему собственному значению λ_{max} этой матрицы. Элегантность МАИ и его относительная простота в применении к изучению различных проблемных ситуаций приводит к ежегодному появлению сотен исследовательских работ, в которых этот метод используется для анализа и решения разнообразных практических задач.

Следует отметить некоторую логическую незавершенность МАИ, связанную с отсутствием количественных оценок для погрешности получаемых с его помощью результатов. Контроль за корректностью результатов осуществляется в МАИ с помощью так называемого "индекса согласованности" (Саати, 2008, § 2.9; Saaty, 2012, § 1.7) $C.I. = (\lambda_{max} - n)/(n-1)$, который реализует лишь некоторый эвристический подход к контролю точности вычислений и не позволяет определять реальную величину ошибки метода.

В данной работе предпринимается попытка анализа основной вычислительной процедуры, использующей матрицу парных сравнений с точки зрения теории измерений. Результатом этого анализа являются формулы для погрешности вычислительной процедуры МАИ.

Предположим, что существует некое устройство для измерения значимостей факторов $G_1,...,$ G_n по отношению к анализируемой ситуации или проблеме. Пусть в процессе работы это устройство производит различными способами n измерений значимости фактора G_i , выдавая их значения $\omega_i^{(1)},...,$ $\omega_i^{(n)}$. Тогда среднее значение результатов полученных измерений

$$\bar{\omega}_i = \frac{1}{n} \sum_{j=1}^n \omega_i^{(k)} = \frac{\omega_i^{(1)} + \dots + \omega_i^{(n)}}{n}$$

естественно принять за приближенное значение фактора G_i , а среднеквадратичное отклонение

$$\Delta \bar{\omega}_i = \sqrt{\frac{1}{n} \sum_{k=1}^{n} \left(\omega_i^{(k)} - \bar{\omega}_i \right)^2} -$$

за приближенное значение его погрешности, т.е. считать, что значение фактора G_i равно $\bar{\omega}_i \pm \Delta \bar{\omega}_i$.

Опираясь на этот стандартный подход к процессу измерения, сформулируем близкий к нему нестандартный подход, который будет использован нами далее.

Утверждение. Если деформировать результаты измерений путем добавления к значению с номером і фактора G_i величины ε_i : $\omega_i^{(i)} \to \omega_i^{(i)} + \varepsilon_i$, то деформированное среднее значение (ε -среднее)

$$\omega_{i} = \frac{\omega_{i}^{(1)} + \omega_{i}^{(2)} + \dots + (\omega_{i}^{(i)} + \varepsilon_{i}) + \dots + \omega_{i}^{(n)}}{n}$$
(1)

можно рассматривать в качестве нового приближенного значения фактора G_i с погрешностью

$$\delta\omega_i = \Delta\omega_i + |\varepsilon_i|/n,\tag{2}$$

где

$$\Delta\omega_i = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\omega_i^{(k)} - \omega_i)^2}$$
 (3)

среднеквадратичное отклонение результатов измерения от деформированного среднего ω_i , т.е. считать значение фактора G_i равным

$$\nu_i = \omega i \pm \delta \omega_i. \tag{4}$$

Доказательство. Фактически нужно проверить включение

$$[\bar{\omega}_i - \Delta \bar{\omega}_i, \bar{\omega}_i + \Delta \bar{\omega}_i] \subseteq [\omega_i - \delta \omega_i, \omega_i + \delta \omega_i]. \tag{5}$$

Это легко сделать, если выразить "деформированные" величины через исходные:

$$\omega_i = \bar{\omega}_i + \varepsilon_i/n, \ \Delta \omega_i = \sqrt{\frac{1}{n} \sum_{k=1}^n (\omega_i^{(k)} - \omega_i)^2} = \sqrt{\Delta \bar{\omega}_i^2 + (\varepsilon_i/n)^2}.$$

Тогда

$$\omega_{i} - \delta\omega_{i} = \bar{\omega}_{i} + \varepsilon_{i}/n - (\Delta\omega_{i} + |\varepsilon_{i}|/n) = \bar{\omega}_{i} - (|\varepsilon_{i}| - \varepsilon_{i})/n - \sqrt{\Delta\bar{\omega}_{i}^{2} + (\varepsilon_{i}/n)^{2}} \leq \bar{\omega}_{i} - \Delta\bar{\omega},$$

т.е. $\omega_i - \delta \omega_i \le \bar{\omega}_i - \Delta \bar{\omega}$. Аналогично можно получить и другое неравенство. Из этих неравенств и вытекает (5).

2. ВЫЧИСЛИТЕЛЬНАЯ ПРОЦЕДУРА МАИ С ТОЧКИ ЗРЕНИЯ є-ДЕФОРМИРОВАННЫХ ИЗМЕРЕНИЙ

Покажем, каким образом метод собственных значений, применяемый в МАИ для извлечения информации о факторах G_1 , ..., G_n из соответствующей матрицы парных сравнений, может быть переформулирован в терминах ε -деформированных измерений.

Будем исходить из того, что каждый элемент a_{ik} матрицы парных сравнений имеет смысл относительной значимости факторов G_i и G_k . Тогда, предполагая известными ε -средние значения $\omega_1, \ldots, \omega_n$ всех факторов и принимая значимость фактора G_k в процессе сравнения факторов G_i и G_k равной ω_k , для значимости фактора G_i получим

$$\omega_i^{(k)} = a_{ik} \omega_k \,. \tag{6}$$

Если рассматривать величину (6) в качестве результата измерения k значимости фактора G_i , то процедура заполнения всей строки i матрицы парных сравнений (т.е. процедура сравнения

фактора G_i со всеми факторами $G_1,...,G_n$) превращается в процесс из n измерений значимости фактора G_i .

Полученные в результате различных измерений значимости $\omega_i^{(k)}$ факторов $G_1, ..., G_n$ должны удовлетворять условиям (1), которые, с учетом (6), можно переписать в виде:

$$\omega_{i} = \frac{a_{i1}\omega_{1} + ... + (a_{ii}\omega_{i} + \varepsilon_{i}) + ... + a_{in}\omega_{n}}{n} = \frac{1}{n} \left(\varepsilon_{i} + \sum_{k=1}^{n} a_{ik}\omega_{k} \right), \quad i = 1, ..., n.$$
 (7)

Положим

$$\varepsilon_i = -\sigma\omega_i, \tag{8}$$

где о - некоторая постоянная, и обозначим

$$\lambda_{max} \equiv n + \sigma. \tag{9}$$

Тогда равенство (7) можно переписать в виде

$$\sum_{k=1}^{n} a_{ik} \omega_k = \lambda_{max} \omega_i, \quad i = 1, ..., n,$$
(10)

или

$$A\omega = \lambda_{max}\omega,\tag{11}$$

где A – матрица парных сравнений; ω – матрица-столбец из $\omega_1,...,\omega_n$.

Формулы (11), (9), (8) подводят к следующему выводу: если є-деформации в є-деформированных измерениях имеют значения

$$\varepsilon_i = -\sigma \omega_i = -(\lambda_{max} - n)\omega_i, \quad i = 1, ..., n, \tag{12}$$

то є-средние значения $\omega_1,...,\omega_n$ значимостей рассматриваемых факторов являются компонентами собственного вектора, соответствующего некоторому вещественному собственному значению λ_{max} матрицы парных сравнений A (вещественность λ_{max} вытекает из (10), так как все ω_k и a_{ik} вещественные числа). При этом справедливо следующее утверждение.

Утверждение. λ_{max} наибольшее собственное значение матрицы парных сравнений A, причем $\lambda_{max} \geq n$.

Доказательство. Рассмотрим случай абсолютно точных измерений, когда значимости всех факторов $\omega_1,...,\,\omega_n$ известны абсолютно точно и все матричные элементы матрицы парных сравнений могут быть записаны в виде $a_{ik}=\omega_i/\omega_k$. Очевидно, что для него равенства (10) принимают вид

$$\sum_{k=1}^{n} a_{ik} \omega_k = n \omega_i, \quad i = 1, ... n \iff A \omega = n \omega.$$

Таким образом, $\lambda_{max} \geq n$.

Естественно предположить, что, по мере отклонения результатов измерений от абсолютно точных, собственное значение λ_{max} будет плавно отклоняться от значения n. Отсюда следует, что при малых погрешностях оно должно быть близким к n. Как показано (Саати, 1993, § 7.5), такое собственное значение у матрицы парных сравнений только одно, причем оно является ее наибольшим собственным значением и удовлетворяет условию: $\lambda_{max} \ge n$.

Из данного утверждения вытекает, что ε -средние значения $\omega_1,...,\omega_n$ значимостей рассматриваемых факторов являются компонентами собственного вектора матрицы парных сравнений, соответствующего ее наибольшему собственному значению λ_{max} . А это, в свою очередь, означает, что указанные ε -средние $\omega_1,...,\omega_n$ совпадают с значимостями факторов в вычислительной процедуре МАИ.

Таким образом, мы приходим к следующему результату: вычислительная процедура МАИ

$$A\begin{bmatrix} \omega_1 \\ \dots \\ \omega_n \end{bmatrix} = \lambda_{max} \begin{bmatrix} \omega_1 \\ \dots \\ \omega_n \end{bmatrix}$$

с матрицей парных сравнений $A = ||a_{ik}||$ эквивалентна процедуре ε -деформированных измерений с ε -деформациями (12) и результатами измерений в виде (6).

3. ФОРМУЛЫ ДЛЯ ПОГРЕШНОСТИ ВЫЧИСЛИТЕЛЬНОЙ ПРОЦЕДУРЫ МАИ

Остается воспользоваться эквивалентностью вычислительной процедуры МАИ и процедуры ε -деформированных измерений и найти, в соответствии с (2), (6), (12), погрешности для получаемых с их помощью значимостей ω_1 , ω_n :

$$\delta\omega_{i} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (a_{ik} \omega_{k} - \omega_{i})^{2}} + \frac{\lambda_{max} - n}{n} \omega_{i}, \quad i = 1, ..., n,$$

$$\frac{\delta\omega_{i}}{\omega_{i}} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} \left(a_{ik} \frac{\omega_{k}}{\omega_{i}} - 1 \right)^{2}} + \frac{\lambda_{max} - n}{n} \omega_{i}, \quad i = 1, ..., n.$$
(13)

Для относительных погрешностей (13) справедлива также простая оценочная формула

$$\frac{\delta \omega_i}{\omega_i} \le 1, 2 \sqrt{\lambda_{max} - n}, \quad i = 1, ..., n,$$
(14)

использующая только λ_{max} и позволяющая осуществлять экспресс-контроль точности вычислений.

4. ВЫВОД ОЦЕНОЧНОЙ ФОРМУЛЫ ДЛЯ ПОГРЕШНОСТИ

Покажем, каким образом из формулы (13) получается формула (14). Для этого воспользуемся идеологией є-деформированных измерений, трактуя величину

$$\Delta\omega_i^{(k)} = \omega_i^{(k)} - \omega_i \Longleftrightarrow \Delta\omega_i^{(k)} = a_{ik}\omega_k - \omega_i \tag{15}$$

как отклонение результата измерения с номером k значимости фактора G_i от его среднего значения ω_i , а величину $\Delta \omega_i^{(k)}/\omega_i$ — как относительную погрешность этого измерения. Рассмотрим первое слагаемое, стоящее в правой части формулы (13). В терминах относительных погрешностей оно может быть записано в виде

$$\sqrt{\frac{1}{n} \sum_{k=1}^{n} \left(a_{ik} \frac{\omega_k}{\omega_i} - 1 \right)^2} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\Delta \omega_i^{(k)} / \omega_i)^2}.$$
 (16)

Для оценки величины правой части (14) воспользуемся равенством

$$\lambda_{max} - n = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{(\Delta \omega_j^{(k)} / \omega_i)^2}{1 + (\Delta \omega_i^{(k)} / \omega_i)}$$
(17)

(доказательство этого равенства в техническом аспекте аналогично доказательству (Саати, 1993, с. 167) теоремы о свойстве собственного значения λ_{max}) и покажем, что

$$\sqrt{\frac{1}{n} \sum_{k=1}^{n} (\Delta \omega_i^{(k)} / \omega_i)^2} \le \sqrt{(1 + \alpha(-n))}, \quad i = 1, ..., n, \quad \alpha = \max_{i, k} |\Delta \omega_i^{(k)} / \omega_i|.$$
 (18)

Поскольку здесь i — это номер фактора, то при получении оценки (18), не нарушая общности, можно считать, что i = 1. И тогда, предполагая α < 1 и учитывая, что 1 + $\Delta \omega_i^{(k)}/\omega_i \leq$ 1 + α , для правой части (15) получим

$$\frac{1}{n} \sum_{k=1}^{n} (\Delta \omega_i^{(k)} / \omega_1)^2 \leq \frac{1}{n} \sum_{k=1}^{n} \frac{(\Delta \omega_i^{(k)} / \omega_1)^2}{1 + \Delta \omega_i^{(k)} / \omega_1} (1 + \alpha) \leq \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} \frac{(\Delta \omega_j^{(k)} / \omega_j)^2}{1 + \Delta \omega_j^{(k)} / \omega_j} (1 + \alpha).$$

Используя (16), этот результат можно переписать в виде

$$\frac{1}{n}\sum_{k=1}^{n}(\Delta\omega_{i}^{(k)}/\omega_{1})^{2}\leq(1+\alpha)(\lambda_{max}-n).$$

Очевидно, что такое неравенство будет иметь место не только для i = 1, но и для любого i. Отсюда и вытекает (17).

Теперь с помощью (17) получим максимально простую формулу, позволяющую оценивать величину погрешности вычислительной процедуры МАИ, учитывая, что реально допустимые относительные погрешности не должны выходить за пределы 30–40%. Для таких погрешностей $\sqrt{1+\alpha} < 1.2$. Тогла

$$\sqrt{\frac{1}{n}\sum_{k=1}^{n}\left(a_{ik}\frac{\omega_{k}}{\omega_{i}}-1\right)^{2}}\leq 1,2\sqrt{\lambda_{max}-n}.$$

Подставляя эту оценку в (13), находим оценку сверху для относительной погрешности

$$\frac{\delta \omega_i}{\omega_i} \le 1, 2 \sqrt{\lambda_{max} - n} + \frac{\lambda_{max} - n}{n}, \quad i = 1, ..., n.$$

Это выражение допускает дальнейшее упрощение, поскольку в допустимом интервале погрешностей второе слагаемое имеет величину на порядок меньшую первого. Отбрасывая это слагаемое, получаем максимально простую оценочную формулу для погрешности (14).

5. ЗАМЕЧАНИЕ О ЛОГИЧЕСКОМ ХАРАКТЕРЕ ПОГРЕШНОСТИ ВЫЧИСЛИТЕЛЬНОЙ ПРОЦЕДУРЫ МАИ

Применительно к трудно формализуемым факторам (социальным, психологическим и т.п.) понятие точности вычислений требует уточнения. Это связано с тем, что основным элементом вычислительной процедуры МАИ является "измеритель" – субъект или группа субъектов – участвующий в заполнении матрицы парных сравнений. В силу этого результат вычислений отражает внутренние установки и представления "измерителя". Поэтому под точностью вычислений мы можем понимать только логическую точность соответствия результатов вычисления внутренним установкам и представлениям "измерителя". Такую точность можно характеризовать только степенью согласованности (непротиворечивости) умозаключений "измерителя" в процессе заполнения им матрицы парных сравнений.

В МАИ эта степень согласованности находит отражение в свойствах матричных элементов a_{ik} матрицы парных сравнений: если умозаключения "измерителя" при сравнении значимостей ν_i , ν_k , ν_m факторов G_i , G_k , G_m были непротиворечивы, то для соответствующих матричных элементов матрицы парных сравнений будет справедливо следующее:

$$a_{ik} = \frac{\nu_i}{\nu_k}, \quad a_{km} = \frac{\nu_k}{\nu_m}, \quad a_{im} = \frac{\nu_i}{\nu_m} \Rightarrow a_{ik} a_{km} = a_{im}.$$

Матрицы парных сравнений, для которых последнее условие выполняется, называются в МАИ согласованными, а их наибольшее собственное значение, как показано (Саати, 1993, § 7.6), равно n, т.е. $\lambda_{max} = n$. Согласно (14), непротиворечивости умозаключений достаточно, для того чтобы погрешность вычислительной процедуры МАИ оказалась равной нулю.

СПИСОК ЛИТЕРАТУРЫ

Саати Т. (1993): Принятие решений. Метод анализа иерархий. М.: Радио и связь.

Саати Т. (2008): Принятие решений при зависимостях и обратных связях. Аналитические сети. М: Издательство ЛКИ.

Saaty T. (2008): The Analytic Hierarchy and Analytic Network Measurement Processes: Applications to Decisions under Risk // European Journal of Pure and Applied Mathematics. Vol. 1. No. 1.

Saaty T., Vargas L. (2012): Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. N.Y.: Springer.

Поступила в редакцию 13.05.2013 г.

Estimates for an Error in Analytic Hierarchy Process

I.L. Tomashevsky

It is shown that the basic procedure of calculation of priorities in Analytic Hierarchy Process (AHP) is equivalent to some " ϵ -deformed" measuring process. The analysis of this process from the point of the theory of measurements was carried out. Simple estimates for error in AHP were obtained.

Keywords: Analytic Hierarchy Process, AHP, error.

JEL Classification: C43, C44.