О ЗАДАЧАХ, ИНВАРИАНТНЫХ ОТНОСИТЕЛЬНО ≈-ОКРУГЛЕНИЯ

А. А. ВОТЯКОВ

(Москва)

Рассмотрим задачу: найти $\max(c, x)$ при

$$Ax \leqslant a,$$
 (1)

где вектор x — целочисленный.

Будем говорить, что (1) имеет вид, удобный для полного округления, если существует $x_0 \in M$ такое, что

$$\max_{x \in \mathcal{X}} (e_i, x) = (x_0)_{i, i} = 1, 2, \dots, n, \tag{2}$$

$$\max_{c \in \mathcal{M}} (c, x) = (c, x_0), \tag{3}$$

где

$$M = \{ x \in R^n \mid Ax \leqslant a \}.$$

Вопросы приводимости целочисленной задачи к виду, удобному для полного округления, изложены в [1, 2].

Из (2) можно получить задачу, эквивалентную (1): найти $\max(c, x)$

при

$$Ax \leqslant a,$$
 (4)

$$x_i \leq [\max_{x \in M}(e_i, x)], \quad i = 1, 2, \ldots, n,$$

где вектор x — целочисленный; $[\alpha]$ — целая часть числа α . Отсюда всякое допустимое решение (1) является допустимым решением (4) и наоборот.

Обозначим через M_1 множество допустимых решений системы неравенств

$$Ax \leq a,$$

$$x_i \leq [\max_{e_i} (e_i, x)], \quad i = 1, 2, \dots, n.$$

Переход от множества М к М, назовем итерацией z-алгоритма. Усло-

вия сходимости z-алгоритма в общем случае изложены в [2].

В настоящей работе рассматриваются условия, при которых линейная целочисленная задача, имеющая вид, удобный для полного округления, сохраняет его на каждой итерации z-алгоритма. В дальнейшем такая задача будет называться целочисленной, инвариантной относительно z-алгоритма, или просто инвариантной целочисленной задачей там, где это не вызывает недоразумений. В общем случае целочисленная задача неинвариантна, поэтому перед началом каждой итерации z-алгоритма ее необходимо заново приводить к виду, удобному для полного округления.

Легко видеть, что точка x_0 определяется однозначно соотношениями (2). Если существует перестановка строк системы $Ax \leqslant a$, после чего она

переходит в

$$Bx \leqslant Bx_0, B'x \leqslant B'x_0 + \delta,$$

где $\delta \geqslant 0$, B — невырожденная квадратная матрица, для которой справедливо матричное неравенство $B^{-1} \geqslant 0$, то для точки $x_0 \in M$ выполняется

(2). Действительно,
$$(e_i, x) = \sum_{j=1}^n (B^{-i})_{ij}(B_j, x), B^{-i} \geqslant 0$$
, поэтому по теореме Минковского $\max_{x \in M} (e_i, x) = (x_0)_i, i = 1, 2, \dots, n$.

Будем полагать, что A — квадратная невырожденная матрица размера $n \times n$, $a = Ax_0$, $A^{-1} \geqslant 0$. По определению итерации z-алгоритма $M_1 = \{x \in R^n | Ax \leqslant Ax_0; x \leqslant [x_0]\}$, где $[x_0]$ — вектор с компонентами $([(x_0)_1], \ldots, [(x_0)_n])$. Точка $\widetilde{x} \in M_1$, в которой выполняются соотношения

$$\max_{\mathbf{x}\in M_1}(c,x)=(c,\tilde{x}), \quad \max_{\mathbf{x}\in M_1}(e_i,x)=(e_i,\tilde{x}), \quad i=1,2,\ldots,n,$$

лежит, очевидно, на поверхности конуса $x\leqslant [x_0]$.

Пусть $I = \{i = 1, 2, ..., n | \tilde{x}_i = [x_0]_i\}$. Множество I при фиксированной матрице A зависит только от выбора точки x_0 и может совпадать с любым непустым подмножеством множества натуральных чисел $\{1, ..., n\}$. Это свойство приводит к следующему условию: для того чтобы задача (1) была инвариантной относительно z-алгоритма, необходимо, чтобы для каждой подматрицы P, состоящей из полных строк матрицы E_n , существовала подматрица Q, состоящая из полных строк матрицы A, такая, что матрица $B = \binom{P}{Q}$ невырождена и $B^{-1} \geqslant 0$.

Пемма 1. Для инвариантности задачи (1) относительно z-алгоритма необходимо, чтобы для коэффициентов матрицы A после некоторой перестановки строк выполнялись соотношения: $A_{i,i} > 0$, i = 1, 2, ..., n;

 $A_{i,j} \leq 0, i \neq j = 1, 2, ..., n.$

Доказательство. Предположим, что матрица P получена из E_n вычеркиванием первой строки. Тогда соответствующая матрица Q состоит из одной строки матрицы A, например, A_{i_1} , $B^{-i} \geqslant 0$ тогда и только тогда когда $A_{i_1i} > 0$, $A_{i_1j} \leqslant 0$, $j = 2, \ldots, n$. Аналогично предположим, что матрица P получена вычеркиванием из E_n строки с номером k, и пусть соответствующая предыдущему условию матрица $Q = A_{i_k}$. $B^{-i} \geqslant 0$ тогда и только тогда, когда $A_{i_k k} > 0$, $A_{j_k j} \leqslant 0$, $k \neq j$; $j = 1, 2, \ldots, n$.

Легко видеть, что в последовательности строк $A_{i_1}, A_{i_2}, \ldots, A_{i_n}$ все строки различны и каждая строка A_{i_k} содержит только один строго положительный элемент A_{i_k} , следовательно, перестановка $A_{i_1}, A_{i_2}, \ldots, A_{i_n}$ является искомой. Лемма доказана полностью.

С этого момента будем считать, что матрица ограничений задачи (1)

имеет вид $(\pm \mp)$, т. е. $A_{i,i} > 0$, $A_{i,j} \le 0$, $i \ne j$; $i, j = 1, \ldots, n$.

Пусть D — подматрица матрицы A. Назовем ее главной подматрицей порядка p, если она имеет размерность $p \times p$ и вид ($\pm \mp$). Соответствующий минор матрицы A назовем главным минором порядка p.

Лемма 2. Для того чтобы задача (1) была инвариантной относительно z-алгоритма, необходимо, чтобы матричное неравенство $D^{-1} \geqslant 0$ выполня-

лось для каждой главной подматрицы D матрицы А.

Доказательство. Рассмотрим условия, при которых матрица $\binom{P}{Q}^{-1} \geqslant 0$. Каждая строка матрицы $\binom{P}{Q}$ содержит только один

строго положительный элемент (строка из P как строка единичной матри-

цы, строка из Q как строка матрицы A). Таким образом, $\binom{P}{Q}^{-1} \geqslant 0$

 $\begin{pmatrix} P \\ Q \end{pmatrix}$ содержит не только в том случае, если каждый столбец матрицы менее одного строго положительного элемента. Следовательно, после некоприводится к виду торой перестановки строк матрица Обозначим полученную матрицу через B. Легко видеть, что матрица B $_{
m cosnagae}$ т с матрицей, полученной из матрицы E_{n} путем замены каждой

строки, не принадлежащей P, на строку матрицы A с тем же номером. Вычеркнем из матрицы B строки, принадлежащие P, и столбцы с теми же номерами. Обозначим оставшуюся матрицу через D. Легко проверить, что $B^{-1} \geqslant 0$ только тогда, когда $D^{-1} \geqslant 0$. Матрица D имеет вид $(\pm \mp)$, следовательно, она является главной подматрицей матрицы А. Ввиду про-

извольности Р лемма доказана полностью.

Следствие. Для того чтобы задача (1) была инвариантна, необходимо, чтобы каждый главный минор матрицы А был строго положителен.

Доказательство. Будем вести его индукцией по порядку минора. По лемме 1 все главные миноры первого порядка строго положительны. Предположим, что утверждение леммы справедливо для всех главных миноров порядка p, где $p \leqslant l$. Выберем произвольную главную подматрицу D матрицы A порядка l+1. В силу леммы 2 минор |D| отличен от нуля и $D^{-1} \geqslant 0$. Элемент матрицы

$$(D^{-1})_{11} = \frac{\Delta_{11}}{|D|} \geqslant 0,$$

где Δ_{11} — главный минор матрицы A порядка l, поэтому $\Delta_{11}>0$, $|D|\neq 0$, следовательно, $\infty>(D^{-1})_{11}>0$. Но тогда |D|>0. Следствие доказано полностью.

Для того чтобы задача (1) была инвариантной относительно z-алгоритма, необходимо, чтобы выполнялось соотношение $c \geqslant 0$.

Доказательство. Выберем x_0 так, чтобы точка $[x_0]$ была внутренней точкой конуса M. Точка \tilde{x} в этом случае совпадает с $[x_0]$. $\max(c, x) =$

 $=(c,[x_0])$ только тогда, когда $c \ge 0$. Лемма доказана полностью.

Назовем последовательность главных подматриц матрицы А возрастающей, если каждая последующая матрица содержит подматрицей предыдущую. Соответствующую последовательность определителей будем называть связанной последовательностью главных миноров матрицы А.

Число различных элементов в возрастающей последовательности глав-

ных подматриц не превышает, очевидно, п.

Назовем возрастающую последовательность главных подматриц матрицы А максимальной, если она состоит из п различных элементов. Соответствующую последовательность миноров назовем максимальной связанной последовательностью. Будем говорить, что для матрицы А выполняется условие Сильвестра, если существует хотя бы одна максимальная последовательность связанных миноров, каждый из которых строго положителен.

Теорема 1. Задача (1) инвариантна относительно z-алгоритма тогда и только тогда, когда для матрицы А выполняется условие Сильвестра,

матрица A имеет вид $(\pm \mp)$ и вектор $c \ge 0$. Доказательство. Необходимость условий теоремы вытекает из леммы 1, следствия леммы 2 и из леммы 3. Доказательству достаточности предпошлем лемму.

Пемма 4. Пусть A — матрица вида $(\pm \mp)$ и существует максимальная последовательность главных подматриц $D_1, D_2, \ldots, D_n = A$ матрицы A такая, что $|D_i| > 0$ при $i = 1, 2, \ldots, n$. Тогда $(D_i)^{-1} \geqslant 0, i = 1, 2, \ldots, n$.

Доказательство. Не теряя общности, можно считать, что после-

довательность D_i такова

$$a_{11}$$
, $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, ..., A .

Заметим, что из неравенств

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} > 0, a_{11} > 0, a_{12} \leqslant 0, a_{21} \leqslant 0,$$

 $a_{22}>0$, следует, что $\binom{a_{11}}{a_{21}}$ a_{22} $\binom{a_{12}}{a_{21}}$ $\binom{a_{12}}{a_{22}}$ $\binom{a_{12}}$

казана.

Предположим, что лемма верна для всех $n \leq p$ и докажем ее справедливость для случая n = p + 1. Обозначим через B матрицу

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,p} & a_{1,p+1} \\ \vdots & & \vdots & \vdots \\ a_{p,1} & \dots & a_{p,p} & a_{p,p+1} \\ a_{p+1,1} & \dots & a_{p,p+1} a_{p+1,p+1} \end{pmatrix}.$$

По условию леммы $|B| \geqslant 0$, по индуктивному предположению

$$D^{-1} = \begin{pmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & & \vdots \\ a_{p,1} & \dots & a_{p,p} \end{pmatrix}^{-1} \geqslant 0.$$

Матрица $F=\begin{pmatrix} D^{-1}&0\\0&1\end{pmatrix}$ $B=\begin{pmatrix} E_p&|&f_{1,p+1}\\f_{p+1,1}&\dots f_{p+1,p+1}\end{pmatrix}$ имеет вид $(\pm\mp)$. Обозначим че рез G матрицу

$$G = \left(\frac{E_v}{-f_{p+1,1} \cdot \cdot \cdot \cdot - f_{p+1,p} \mid 1}\right) \geqslant 0.$$

Матрица GF имеет вид $\begin{pmatrix} E_p & f_{1,p+1} \\ \vdots & \vdots \\ f_{p,p+1} \\ \hline 0 & (GF)_{p+1,p+1} \end{pmatrix}$, где $(GF)_{p+1}$, $_{p+1} = |GF| =$

= |G||F| = |F| > 0, так как $F = |\frac{|B|}{|D|}$. Легко проверить, что матрица $(GF)^{-1} \geqslant 0$. Справедливость утверждения леммы для случая p+1 следует из соотношения

$$B^{-1} = F^{-1} \begin{pmatrix} D^{-1} & 0 \\ 0 & 1 \end{pmatrix} = (GF)^{-1} G \begin{pmatrix} D^{-1} \mid 0 \\ 0 \mid 1 \end{pmatrix},$$

так как входящие в него матрицы неотрицательны. Лемма доказана полностью.

Следствие 1. Если для матрицы A выполнены условия леммы 4, то всякий главный минор матрицы A строго положителен.

Доказательство. При n=1, 2 следствие очевидно.

Предположим, что оно верно для всех $n \leq p$. Докажем его для n = p+1. По лемме 4 $D_{p+1}^{-1} \geqslant 0$. Матрица D_{p+1} имеет вид $(\underline{++})$, следовательно, $(D_{p+1}^{-1})_{i,i} > 0$, $i=1,2,\ldots,p+1$. Заметим, что $(D_{p+1}^{-1})_{i,i} = \frac{\Delta_{i,i}}{|D_{p+1}|}$,

где через $\Delta_{i,i}$ обозначен главный минор матрицы D_{p+1} , остающийся после вычеркивания i-й строки и i-го столбца. По условию $|D_{p+1}| > 0$, следовательно, $\Delta_{i,i} > 0$, т. е. все главные миноры матрицы D_{p+1} порядка p строго положительны. Возьмем произвольную главную подматрицу D' матрицы D_{p+1} порядка p, отличную от D_p . Легко видеть, что для нее существует максимальная связанная последовательность главных подматриц такая, что первые p-1 матрицы являются подматрицами матрицы D_p . Из индуктивного предположения вытекает строгая положительность каждого главного минора матрицы D'. Следствие доказано полностью.

Следствие 2. Если для матрицы A выполнены условия леммы 4 и D — некоторая главная подматрица матрицы A, то $D^{-1} \geqslant 0$. Доказательст-

во очевидно.

Перейдем теперь к доказательству достаточности условий теоремы. Достаточность. Предположим, что условия теоремы выполнены и в точке $\tilde{x} \in M_1$ для некоторого достаточно малого ε выполняются соотношения

$$\max_{x \in M_1} (c, x) = (c, \widetilde{x}),$$

$$\max_{x \in M_1} (c_{\varepsilon}, x) = (c_{\varepsilon}, \widetilde{x}),$$

где $c_{\varepsilon} = (c_1 + \varepsilon, c_2 + \varepsilon, \dots, c_n + \varepsilon)$. Представим M_1 в виде

$$B'x \leqslant B'\widetilde{x},$$
 $B''x \leqslant B''\widetilde{x} + \delta$, где $\delta > 0$.

Для доказательства того, что (1) сохраняет вид, удобный для полного округления на первой итерации z-алгоритма, достаточно показать, что матрица B' содержит подматрицей некоторую невырожденную подматрицу B такую, что $\overline{B}^{-1} \geqslant 0$. По теореме Минковского существует подматрица B матрицы B' такая, что B — невырождена и для некоторых $\lambda_i \geqslant 0$ выполняется равенство

$$\sum_{i=1}^{n} \lambda_i B_i = c_e. \tag{5}$$

Докажем, что $B^{-1}\geqslant 0$. В силу (5), каждый столбец матрицы B содержит хотя бы один строго положительный элемент. Матрица B является подматрицей матрицы $\binom{A}{E_n}$, поэтому каждая строка матрицы B содержит только один строго положительный элемент, следовательно, матрица B с точностью до порядка строк имеет вид ($\pm \mp$). Не теряя общности, будем считать, что она имеет этот вид.

Для матрицы B выполняется условие Сильвестра. Действительно, вычеркнем из матрицы B строки, совпадающие со строками матрицы E_n , и соответствующие столбцы так, чтобы оставшаяся матрица \overline{A} была главной подматрицей матрицы A. Для матрицы \overline{A} условие Сильвестра выполнено по следствию 1 из леммы 4. Легко проверить, что всякий главный минор матрицы B, содержащий \overline{A} , равен $|\overline{A}|$. Таким образом, доказано, что для матрицы B выполняется условие Сильвестра и, следовательно, условия леммы 4, поэтому $B^{-1} \geqslant 0$.

В приведенном выше доказательстве правые части системы неравенств, определяющих M_1 , не учитывались. По определению второй итерации z-алгоритма

 $M_2 = \{x \in M_1 | x \leqslant [\widetilde{x}]\} = \{x \in R^n | Ax \leqslant Ax_0;$ $x_i \leqslant \min([x_0]_i, [\widetilde{x}]_i); i = 1, 2, \ldots, n\},$

т. е. при переходе от M_1 к M_2 изменяются только правые части системы неравенств, определяющей M_2 . Следовательно, (1) при выполнении условий теоремы сохраняет вид, удобный для полного округления и на второй итерации z-алгоритма. Возможность проведения индукции очевидна. Теорема доказана полностью.

Теорема 2. Для решения целочисленной задачи, инвариантной относи-

тельно z-алгоритма, требуется не более чем $\sum_{i=1}^{n} \left(\left[\widetilde{x}_i \right] - \overline{x}_i
ight)$ итераций z-ал-

горитма, где \overline{x} — целочисленное решение задачи, \widetilde{x} — непрерывное решение этой же задачи.

Доказательство. Обозначим через M_1 множество, полученное после первой итерации z-алгоритма; через M_2 — множество, являющееся результатом второй итерации z-алгоритма, через M_l — множество, получающееся после l-й итерации z-алгоритма, через \widetilde{x}_k — точку из M_k , для которой выполняется $\max(e_i, x) = (\widetilde{x}_k)_i$.

По определению итерации z-алгоритма:

$$\widetilde{x} \geqslant [\widetilde{x}] \geqslant \widetilde{x}_1 \geqslant [\widetilde{x}_1] \geqslant \widetilde{x}_2 \geqslant \ldots \geqslant \widetilde{x}_i \geqslant [\widetilde{x}_i],$$

причем ни в одном из звеньев этой цепи равенство выполняться не может, следовательно,

$$\sum_{j=1}^{n} (\widetilde{x}_{h-1})_{j} > \sum_{j=1}^{n} [\widetilde{x}_{h-1}]_{j} > \sum_{j=1}^{n} (\widetilde{x}_{h})_{j},$$

поэтому

$$\sum_{j=1}^{n} \left[\widetilde{x}_{h-1} \right]_{j} \geqslant 1 + \sum_{j=1}^{n} \left[\widetilde{x}_{h} \right]_{j},$$

что и доказывает теорему.

Следствие. Число итераций, необходимых для решения задачи: найти $\max(c,x)$ при ограничениях $Ax\leqslant Ax_0,\,x\geqslant 0$, где вектор x — целочисленный, $c\geqslant 0$, матрица A удовлетворяет условиям леммы 4, не пре-

вышает $\sum [x_0]_j$. Доказательство очевидно.

ЛИТЕРАТУРА

1. А. А. Вотяков. Алгоритм решения обобщенной целочисленной задачи линейного программирования. В сб. Математические методы в некоторых задачах оптимального планирования. Свердловск, 1967 (Матем. ин-т им. В. А. Стеклова. Свердл. отд).

2. А. А. Вотяков. Некоторые вопросы целочисленного программирования. Экономика и матем. методы, 1968, т. IV, вып. 4.

Поступила в редакцию 11 IV 1969