Модель динамического межотраслевого баланса в виде системы дифференциальных уравнений, оцифрованная в соответствии с уже опубликованной авторской методикой, позволяет ставить и решать широкий круг задач структурной статической устойчивости экономических систем. Оптимизация структурной динамики может быть выполнена при включении в вектор варьируемых параметров любых, а в пределе — всех элементов модели. В настоящей работе для этого выбраны межотраслевые инерционности и предложен метод, который на шаге поиска использует вектор параметров произвольной (допускаемой самой моделью) длины. Это отличает предлагаемый метод от существующих, делая его уникальным. Указанная уникальность заключается в снятии так называемого «проклятия размерности», присущего классическим задачам оптимизации (численного поиска) с применением методов от покоординатного спуска до богатых инструментов ньютоновского типа. В этом смысле метод является конкурентом оптимизации на основе машинного обучения искусственных нейронных сетей. При этом не важно, как именно формализована задача: в ней должны быть выделены целевые показатели и вектор варьируемых параметров. Можно поставить и решить массу оптимизационных задач, изменяя содержание вектора варьируемых параметров по соответствующему плану вычислительного эксперимента. В работе же представлен только один пример и один шаг оптимизации. Ограничивающим и функциональным условием работы метода является сохранение линейной зависимости между желаемыми приращениями вещественных частей собственных значений матрицы состояния модели и их чувствительностей к параметрам управления. Такие «малые» шаги оптимизации представляют собой самостоятельные задачи, численное решение которых можно повторять.
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation
Scientific Electronic Library