1. Бекларян Л.А., Н.К. Хачатрян. (2013). Об одном классе динамических моделей грузоперевозок // Журнал вычислительной математики и математической физики. Т. 53. № 10. C. 1649–1667.
2. Бекларян Л.А., Хачатрян Н.К. (2019). Динамические модели организации грузопотока на железнодорожном транспорте// Экономика и математические методы. Т. 55. № 3. С. 62-73.
3. Гасников А.В., Кленов С.Л., Нурминский Е.А., Холодов Я.А., Шамрай Н.Б. (2013). Введение в математическое моделирование транспортных потоков. Под ред. Гасникова А.В. М.: МЦНМО.
4. Иносэ Х., Хамада Т. (1983). Управление дорожным движением. М.: Транспорт.
5. Сухинова А.Б., Трапезникова М.А., Четверушкин Б.Н., Чубарова Н.Г. (2009). Двумерная макроскопическая модель транспортных потоков // Математическое моделирование. Т. 21. № 2. С. 118–126.
6. Швецов В.И. (2003). Математическое моделирование транспортных потоков // Автоматика и телемеханика. № 11. С. 3–46.
7. Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y. (1995). Dynamical model of tra?c congestion and numerical simulation // Physical Review. E. Vol. 51. P. 1035–1042.
8. Bar-Gera H. (2002). Origin-based algorithm for the traffic assignment problem// Transportation Science. Vol. 36. No. 4. P. 398–417.
9. Beklaryan L.A., Khachatryan N.K. (2006). Traveling Wave Type Solutions in Dynamic Transport Models // Functional Differential Equations. Vol. 13. No. 12. P. 125–155.
10. Beklaryan Levon A., Khachatryan Nerses K., Akopov Andranik S. (2019). Model for organization cargo transportation at resource restrictions// International Journal of Applied Mathematics. Vol. 32. No. 4. P. 627-640.
11. Brackstone M., McDonald M. (2000). Car following: A historical review // Transportation Research. F. Vol. 2. P. 181–196.
12. Carrothers G. A. P. (1956). An historical review of the gravity and potential concepts of human interaction // J. American Instit. Planners. Vol. 22. P. 94–102.
13. Chowdhury D., Santen L., Schadschneider A. (2000). Statistical physics of vehicular tra?c and some related systems // Physics Reports. Vol. 329. P. 199–329.
14. Cremer M., Ludwig J. (1986). A fast simulation model for tra?c ?ow on the basis of Boolean operations // Mathematics and Computers in Simulation. Vol. 28. P. 297–303.
15. Daganzo C. F. (1994). The cell transmission model: A dynamic representation of highway tra?c consistent with the hydrodynamic theory // Transportation Research. B. Vol. 28. P. 269–287.
16. Daganzo C. F. (1995). The cell transmission model, Part II: Network tra?c // Transportation Research. B. Vol. 29. P. 79–93.
17. Fotheringham A. S. (1983). A new set of spacial-interaction models: the theory of competing destinations // Environment and Planning. A. Vol. 15. P. 15–36.
18. Fotheringham A. S. (1986). Modelling hierarchical destination choice // Environment and Planning. A. Vol. 18. P. 401–418.
19. Harris B., Wilson A. G. (1978). Equilibrium values and dynamics of attractiveness terms in production-constrained spatial-interaction models // Environment and Planning. A. Vol. 10. P. 371–388.
20. Helbing D., Treiber M. (1998). Gas-kinetic-based tra?c model explaining observed hysteretic phase transition // Physical Review Letters. Vol. 81. P. 3042–3045.
21. Khachatryan N.K., Akopov A.S. (2017). Model for Organizing Cargo Transportation with an Initial Station of Departure and a Final Station of Cargo Distribution // Business Informatics. No. 1. P. 25–35.
22. Khachatryan N.K., Akopov A.S., Belousov F.A. (2018). About Quasi-Solutions of Traveling Wave Type in Models for Organizing Cargo Transportation // Business Informatics. No. 1 (43). P. 61–70.
23. Leventhal T., Nemhauser G.L., Trotter L. (1973) A column generation algorithm for optimal traffic assignment // Transportation Science. No 7. P. 168–176.
24. Lo H.K., Chen A. (2000) Traffic equlibrium problem with route-specific costs: formulation and algorithms// Transportation Research. B. Vol. 34. No 6. P. 493–513.
25. Nelson P. (1995). A kinetic model of vehicular tra?c and its associated bimodal equilibrium solutions // Transport Theory and Statistical Physics. Vol. 24. P. 383–409.
26. Popkov Yu. S. (1995). Macrosystems theory and its applications. Berlin: Springer Verlag.
27. Prigogine I., Herman R. (1971). Kinetic Theory of Vehicular Tra?c. N.Y.: Elsevier.
28. Shvetsov V.I. (2009) Algorithms for distributing traffic flows// Automation and Remote Control. Vol. 70. No 10, P. 1728–1736.
29. Spiess H., Florian M. (1989). Optimal strategies: a new assignment model for transit networks // Transportation Research. B. Vol. 23. P. 83–102.
30. Treiber M., Hennecke A., Helbing D. (2000). Congested tra?c states in empirical observations and microscopic simulations // Physical Review. E. Vol. 62. P. 1805–1824.
31. Wilson A. G. (1971). A family of spatial interaction models and associated developments // Environment and Planning. A. Vol. 3. P. 255–282.
Комментарии
Сообщения не найдены