1. Divergence theorem (2014). Encyclopedia of Mathematics. Available at: http://www.encyclopediaofmath.org/index.php?title=Divergence_theorem&oldid=31341
2. Fekete S., Mitchell J., Beurer K. (2005). On the continuous Fermat Weber problem. Oper. Res., 53, 1, 6176.
3. FermatTorricelli problem (2012). Encyclopedia of Mathematics. Available at: https://www.encyclopediaofmath.org/index.php/Fermat-Torricelli_problem
4. Kemperman J.H.B. (1987). The median of a finite measure on a Banach space. In: Statistical data analysis based on the L1-norm and related methods. Amsterdam: North-Holland, 217230.
5. Kimberling C. (2020). Encyclopedia of triangle centers. Available at: http://faculty.evansville.edu/ck6/encyclopedia/
6. Launhardt W. (1882). Die Bestimmung des zweckmassigsten Standortes einer gewerblichen An-lage. Zeitschrift des Vereines deutscher Ingenieure, 26, 106115.
7. Panov P.A. (2017). Nash equilibria in the facility location problem with externalities. Journal of the New Economic Association, 1 (33), 2842 (in Russian).
8. Panov P.A. (2018). On the geometric median of convex, triangular and other polygonal domains. The Bulletin of Irkutsk State University. Series Mathematics, 26, 6275 (in Russian).
9. Savvateev A., Sorokin C., Weber S.? (2015).? Multidimensional? free-mobility? equilibrium: Tiebout ?revisited.?Preprint.
10. Weber A. (1909). Uber den Standort der Industrien. Erster Teil. Reine Theorie des Standorts. Ver-lag von J.C.B. Mohr (Paul Siebeck). Tubingen.
11. Weber problem (2014) Encyclopedia of Mathematics. Available at: https://www.encyclopediaofmath.org/index.php/Weber_problem
12. Wesolowsky G.O. (1993). The Weber problem: History and perspectives. Location Sciense, 1, P. 523.
13. Zhang T., Carlsson J. (2014). On the Continuous Fermat Weber Problem for a Convex Polygon Using Euclidean Distance, http://arxiv.org/abs/1403.3715
Comments
No posts found