ON MODIFICATIONS OF THE ULTIMATE NON-COALITIONAL GAME HAVING A CONVEX STRUCTURE
Table of contents
Share
QR
Metrics
ON MODIFICATIONS OF THE ULTIMATE NON-COALITIONAL GAME HAVING A CONVEX STRUCTURE
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Edition
Pages
101-107
Abstract
Some mapping is naturally associated with the noncooperative game of many persons. If this mapping is monotone, then the game is said to have a convex structure, and there are effective numerical methods for solving such games. how As a rule, finite coalition-free games in mixed strategies do not have convex structures. The article discusses modifications of such games based on perturbations the payoff functions of the players. Lower bounds for the magnitudes of perturbations are established, for which the modified game acquires a convex structure. Two new necessary and sufficient conditions for the presence of a convex structure in a finite coalition-free many-person game.
Keywords
ultimate non-cooperative multi-person game, convex game structure, monotone mapping
Date of publication
01.10.2010
Number of purchasers
2
Views
842
Readers community rating
0.0 (0 votes)
Cite   Download pdf
1

References



Additional sources and materials

Gol'shtejn E.G. (2002): Metod resheniya variatsionnykh neravenstv, opredelyaemykh monotonnymi otobrazheniyami // Zhurnal vychislitel'noj matematiki i mat. fiziki. T. 42. № 7.
Gol'shtejn E.G. (2008a): Metod resheniya variatsionnykh neravenstv, ispol'zuyuschij netochnye iskhodnye dannye // Ehkonomika i mat. metody. T. 44. № 3.
Gol'shtejn E.G. (2008b): O monotonnosti otobrazheniya, svyazannogo s neantagonisticheskoj igroj dvukh lits // Ehkonomika i mat. metody. T. 44. № 4.
Gol'shtejn E.G. (2009): O monotonnosti otobrazheniya, svyazannogo s beskoalitsionnoj igroj mnogikh lits // Zhurnal vychislitel'noj matematiki i mat. fiziki. T. 49. № 9.

Comments

No posts found

Write a review
Translate