1. Аганбегян А.Г., Вальтух К.К. (1974). Использование народно-хозяйственных моделей в планировании. М.: Экономика. 231 с.
2. Акопов А.С., Бекларян Л.А., Бекларян А.Л. (2021). Мультисекторная модель ограничен-ного соседства: сегрегация агентов и оптимизация характеристик среды // Математи-ческое моделирование. Т. 33. № 11. C. 95–114.
3. Ведута Н.И. (1999). Социально эффективная экономика. Под общей ред. Е.Н. Ведута. Mos-cow: РЭА. 254 с.
4. Ершов Ю.С., Мельникова Л.В., Суслов В.И. (2009). Практика применения оптимизацион-ных мультирегиональных межотраслевых моделей в стратегических прогнозах россий-ской экономики // Вестник НГУ. Серия: Социально-экономические науки. Т. 9. № 4. C. 9–23.
5. Леонтьев В.В. (1925). Баланс народного хозяйства СССР. Методологический разбор работы ЦСУ // Плановое хозяйство: Ежемесячный журнал. Издание Госплана СССР. № 12. С. 254–258.
6. Макаров В.Л., Бахтизин А.Р., Бекларян Г.Л., Акопов А.С., Ровенская Е.А., Стрелков-ский Н.В. (2022). Агентное моделирование социально-экономических последствий миграции при государственном регулировании занятости // Экономика и математические методы. Т. 58. № 1. С. 113–130.
7. Макаров В.Л., Бахтизин А.Р., Бекларян Г.Л., Акопов А.С., Ровенская Е.А., Стрелков-ский Н.В. (2020). Агентное моделирование популяционной динамики двух взаимодей-ствующих сообществ: мигрантов и коренных жителей // Экономика и математические методы. Т. 56. № 2. С. 5–19.
8. Макаров В.Л., Бахтизин А.Р., Бекларян Г.Л., Акопов А.С., Ровенская Е.А., Стрелков-ский Н.В. (2019). Укрупненная агент-ориентированная имитационная модель миграционных потоков стран Европейского союза // Экономика и математические методы. Т. 55. № 1. С. 3–15.
9. Поспелов И.Г. (2018). Модель случайных продаж // Математические заметки. Т. 103. № 3. С. 445–459.
10. Поспелов И.Г., Жукова А.А. (2012). Стохастическая модель торговли неликвидным това-ром // Труды МФТИ. Т. 2. № 4. С. 131–146.
11. Суслов В.И., Доможиров Д.А., Ибрагимов Н.М., Костин В.С., Мельникова Л.В., Цыпла-ков А.А. (2016). Агент-ориентированная многорегиональная модель «затраты – вы-пуск» российской экономики // Экономика и математические методы. Т. 52. № 1. С. 112–131.
12. Шатилов Н.Ф. (1967). Моделирование расширенного воспроизводства. М.: Экономика. 173 с.
13. Akopov A.S., Beklaryan A.L., Zhukova A.A. (2023). Optimization of characteristics for a sto-chastic agent-based model of goods exchange with the use of parallel hybrid genetic algo-rithm. Cybernetics and Information Technologies, 23 (2), 87–104.
14. Akopov A.S., Beklaryan L.A., Thakur M. (2022). Improvement of maneuverability within a mul-tiagent fuzzy transportation system with the use of parallel biobjective real-coded genetic algorithm. IEEE Transactions on Intelligent Transportation Systems, 23 (8), 12648–12664.
15. Akopov A.S., Beklaryan L.A., Thakur M., Verma D.B. (2019). Parallel multi-agent real-coded genetic algorithm for large-scale black-box single-objective optimisation. Knowledge-Based Systems, 174, 103–122.
16. Binh T., Korn U. (1997). MOBES: A multiobjective evolution strategy for constrained optimiza-tion problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic, 176–182.
17. Deb K., Pratap A., Agarwal S., Meyarivan T. (2002a). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2), 182–197.
18. Deb K., Thiele L., Laumanns M., Zitzler E. (2002b). Scalable multi-objective optimization test problems. Proceedings of the 2002 IEEE Congress on Evolutionary Computation, 1, 825–830.
19. Fonseca C.M., Fleming P.J. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3 (1), 1–16.
20. Holland J.H. (1992). Genetic Algorithms. Scientific American, 267 (1), 66–73.
21. Jin Y. (2005). A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, (9), 3–12.
22. Kennedy J. (1997). The particle swarm: Social adaptation of knowledge. Proceedings of IEEE In-ternational Conference on Evolutionary Computation, 303–308.
23. Kiyotaki N., Wright R. (1989). On money as a medium of exchange. Journal of Political Econo-my, 97 (4), 927–954.
24. Kursawe F. (1991). A variant of evolution strategies for vector optimization. PPSN I990. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 496, 193–197.
25. Lotov A.V., Bushenkov V.A., Kamenev G.K. (2004). Interactive decision maps. Approximation and visualization of the Pareto frontier. Boston: Kluwer Academic Publishers. 307 p.
26. Lotov A.V., Miettinen K. (2008). Visualizing the Pareto Frontier. In: Multiobjective optimization. Interactive and evolutionary approaches, lecture notes in computer science, 5252. Berlin-Heidelberg: Springer, 213–244.
27. Makarov V.L., Bakhtizin A.R., Epstein J.M. (2022). Agent-based modeling for a complex world. 2nd ed., revised. Moscow: GAUGN, Scientific publications department. 74 p.
28. Poloni G., Giurgevich A., Onesti L., Pediroda V. (2000). Hybridization of a multi-objective ge-netic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 186 (2–4), 403–420.
29. Richmond P., Walker D., Coakley S., Romano D. (2010). High performance cellular level agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics, 11 (3), 334–347.
30. Xiaohui Hu, Eberhart R. (2002). Multiobjective optimization using dynamic neighborhood par-ticle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat, 02TH8600). Honolulu, HI, USA, 1677–1681.
31. Zitzler E., Laumanns M., Thiele L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Swiss Federal Inst. Technol., Zürich, Switzerland, TIK-Rep. 103 p.
32. Zitzler E., Thiele L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3 (4), 257–271.
Комментарии
Сообщения не найдены