OPTIMAL PRODUCTION CONTROL OF ORDER PERFORMING BY DELIVERY DATE
Table of contents
Share
QR
Metrics
OPTIMAL PRODUCTION CONTROL OF ORDER PERFORMING BY DELIVERY DATE
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
65-77
Abstract
The application peculiarities of optimal control models in economic problems are discussed. Attention is stressed in the need to fi nd the global extremum. To this end it is proposed, as in the calculus of variations, to build central fi elds of extremals and examine them for global extremum. The central fi eld consists of extremals emanating from the initial point and once covering the reachable area. Since building such a fi eld is analytically much harder than fi nding one extremal, which may be interpreted only as a local extremum, paying more attention to numerical methods is recomended. This program is being implemented at a known problem that is to perform an order for a production by given time at minimum cost. The central fi eld of Pontryagin's extremals is built. An extremal of general position consists of three stages. First, there is a waiting period, then - the gradual deployment of incremental production rate, and at the last stage - the production at maximum speed. It is proved that the fi eld is smooth, so that each trajectory is optimal in the usual sense. For this model numerical experiments were conducted. The family of trajectories constructed numerically is almost indistinguishable visually from the analytical constructed fi eld of extremals. This emphasizes the closeness and adequacy of both approaches.
Keywords
optimal control, order, production output, global extremum, central field of trajectories
Date of publication
01.07.2016
Number of purchasers
1
Views
734
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References



Additional sources and materials

Oryol E.N. (1989). Metod resheniya zadach optimal'nogo upravleniya //Doklady Akademii nauk SSSR. T. 306. № 6. S. 1301-1304.    

Oryol E.N. (1990). Algoritmy poiska kvazioptimal'nogo upravleniya, ispol'zuyuschie razbienie prostranstva sostoyanij // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. T. 29. № 9. S. 1283-1293.      

Oryol E.N., Oryol O.E. (2013). Absolyutnyj ehkstremum v zadachakh optimal'nogo upravleniya // Izvestiya Rossijskoj akademii nauk. Teoriya i sistemy upravleniya. № 3. S. 60-73.              

Oryol E.N., Oryol O.E. (2014). Tsentral'nye polya optimal'nykh traektorij // Doklady Akademii nauk. T. 458. № 4. S. 1-4.              

Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mischenko E.F. (1969). Matematicheskaya teoriya optimal'nykh protsessov. M.: Nauka. 

Fleming U., Rishel R. (1978). Optimal'noe upravlenie determinirovannymi i stokhasticheskimi sistemami. M.: Mir.           

Yang L. (1974). Lektsii po variatsionnomu ischisleniyu i teorii optimal'nogo upravleniya. M.: Mir.          

Caputo M.R. (2005). Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications. Cambridge: Cambridge University Press.      

Dowling E.T. (2000). Introduction to Mathematical Economics. Schaum's Outline Series. N.Y.: McGraw Hill.         

Kamien N., Schwartz N. (1991). Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. N.Y.: Elsevier Science Publishing Co.

Schattler H., Ledzewicz U. (2012). Geometric Optimal Control: Theory, Methods and Examples. N.Y.: Springer.

Comments

No posts found

Write a review
Translate