1. Ехлаков Р. С., Судаков В. А. (2022). Прогнозирование стоимости котировок при помощи LSTM и GRU сетей // Препринты ИПМ им. М. В. Келдыша. № 17. 13 с. DOI: 10.20948/prepr-2022-17 [Ekhlakov R. S., Sudakov V. A. (2022). Forecasting the cost of quotes using LSTM & GRU networks. Preprints of IAM after M. V. Keldysh, 17. 13 p. (in Russian).]
2. Кораблев Ю. А. (2022). Об одном алгоритме восстановления функции по разным функционалам для прогнозирования редких событий в экономике // Финансы: теория и практика. № 3 (26). С. 196–225. DOI: 10.26794/2587-5671-2022-26-3-196-225 [Korablev Yu.A. (2022). An algorithm for restoring a function from different functionals for predicting rare events in the economy. Finance: Theory and Practice, 3 (26), 196–225 (in Russian).]
3. Кораблев Ю. А. (2023). Емкостный метод анализа и прогнозирования редких событий в экономике: монография. М.: РУСАЙНС. 296 с. ISBN: 978-5-466-04159 [Korablev Yu.A. (2023). Capacity method of analysis and forecasting of rare events in the economy. Moscow: RUSCIENS. 256 p. (in Russian).]
4. Craven P., Wahba G. (1978). Smoothing noisy data with spline functions — estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31 (4), 377–403. DOI: 10.1007/BF01404567
5. Friedman J. (1999). Greedy function approximation: A gradient boosting machine. Technical Report. Deptartment of Statistics. Stanford University.
6. Friedman J. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 5 (29), 1189–1232. DOI: 10.1214/aos/1013203451
7. Golub G. H., Heath M., Wahba G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21 (2), 215–223. DOI: 10.1080/00401706.1979.10489751
8. Hansen P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34 (4), 561–580. DOI: 10.1137/1034115
9. Hansen P. C. (2001). The L-curve and its use in the numerical treatment of inverse problems. In: P. Johnston (ed.). Computational inverse problems in electrocardiology. Advances in Computational Bioengineering. Southampton: WIT Press.
10. Korablev Yu.A. (2022). Restoration of function by integrals with cubic integral smoothing spline in R. ACM Transactions on Mathematical Software, 48 (2), 1–17. DOI: 10.1145/3519384 ISSN: 0098-3500
11. Nagesh S. C. (2022). Predict customers probable purchase. Kaggle. Available at: https://www.kaggle.com/code/nageshsingh/predict-customers-probable-purchase
12. Nelder J. A., Mead R. (1965). A simplex method for function minimization. The Computer Journal, 4 (7), 308–313. DOI: 10.1093/comjnl/7.4.308
13. Quinn B. G., Fernandes J. M. (1991). A fast efficient technique for the estimation of frequency. Biometrika, 3 (78), 489–497.
14. Quinn B. G., Hannan E. J. (2001). The estimation and tracking of frequency. Cambridge: Cambridge University Press. 278 p.
Комментарии
Сообщения не найдены