RAS Social ScienceЭкономика и математические методы Economics and the Mathematical Methods

  • ISSN (Print) 0424-7388
  • ISSN (Online) 3034-6177

Assessment of financial contagion of the stock markets of Russia, USA, China and European countries in 2019–2024, using the copula method

PII
S30346177S0424738825030034-1
DOI
10.7868/S3034617725030034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
28-42
Abstract
The article examines the transmission of financial contagion between global stock indices, such as the (USA), (European countries), (China) and (Russia), during the pandemic and new anti-Russian sanctions. ARMA–TGARCH models were used to cleanse the indices’ returns from their own trends and volatility. Shock periods were identified based on the 90th percentile of conditional return volatility. The construction of Gaussian and Student copulas for shock and relatively calm periods made it possible to estimate the change in dependencies between index returns taking into account their marginal distributions. The study confirmed financial contagion between all indices (except for the S&P 500 — STOXX 600 pair) during the acute phase of the pandemic, as well as contagion between the European countries index, on the one hand, and the American and Chinese indices, on the other hand, during the period of new sanctions. Calculating the dependencies for the upper and lower tails of the distribution revealed a greater joint reaction of markets to negative shocks than to positive shocks, and demonstrated the dominance of the wealth channel in contagion compared to the portfolio rebalancing channel. The study develops new progressive methods for analyzing the consequences of global risks for the functioning of national financial systems and assessing the effects of financial contagion. It can be useful for investors to manage portfolios and hedge risks, and for governments to pursue effective financial stabilization policies during periods of global shocks.
Keywords
финансовое заражение фондовые индексы метод копул модель ARMA модель TGARCH
Date of publication
18.12.2025
Year of publication
2025
Number of purchasers
0
Views
38

References

  1. 1. Артамонов Н. В., Ивин Е. А., Курбанкий А. Н., Фанташини Д. (2021). . Вологда: ВолНЦ РАН. 134 с. Режим доступа: https://clck.ru/3AtL3H
  2. 2. Artamonov N. V., Ivin E. A., Kurbatskii A. N., Fantazzini D. (2021). Introduction to time series analysis: A tutorial for universities. Vologda: VolSC RAN. 134 p. Available at: https://clck.ru/3AtL3H (in Russian).
  3. 3. Благовещенский Ю. Н. (2012). Основные элементы теории копул // . Т. 26. № 2. С. 113–130.
  4. 4. Blagoveschensky Y. N. (2012). Basics of copula’s theory. Applied Econometrics, 26 (2), 113–130 (in Russian).
  5. 5. Бусыгин С. В., Шарыпов Р. О. (2019). Применение копул в многомерном анализе обменных курсов на примере развивающихся стран Европы // . Т. 19. № 3. С. 58–72. DOI: 10.25205/2542-0429-2019-19-3-58-72
  6. 6. Busygin S. V., Sharypov R. O. (2019). Copula approach in multivariate exchange rate analysis of developing countries in Eastern Europe. World of Economics and Management, 19 (3), 58–72. DOI: 10.25205/2542-0429-2019-19-3-58-72 (in Russian).
  7. 7. Кендьсь А. М., Труш Н. Н. (2024). Применение моделей копул в анализе акций фондового рынка // . Т. 21. № 2. С. 24–35. DOI: 10.37661/1816-0301-2024-21-2-24-35
  8. 8. Kendys A. M., Troush M. M. (2024). Application of copula models in stock market analysis. Informatics, 21 (2), 24–35. DOI: 10.37661/1816-0301-2024-21-2-24-35 (in Russian).
  9. 9. Пеникас Г. И. (2010a). Модели «копула» в приложении к задачам финансов // . № 7 (7). С. 24–44.
  10. 10. Penikas H. I. (2010). Financial applications of copula-models. The Journal of the New Economic Association, 7 (7), 24–44 (in Russian).
  11. 11. Пеникас Г. И. (2010б). Модели «копула» в управлении валютным риском банка // . № 1 (17). С. 62–87.
  12. 12. Penikas H. I. (2010). Copula models in bank currency risk management. Applied Econometrics, 1 (17), 62–87 (in Russian).
  13. 13. Пеникас Г. И., Симакова В. Б. (2009). Управление процентным риском на основе копулы-GARCH моделей // . № 1 (13). С. 3–36.
  14. 14. Penikas H. I., Simakova V. B. (2012). Interest rate risk management based on copula-GARCH models. Applied Econometrics, 1 (13), 3–36 (in Russian).
  15. 15. Правдухин М. М. (2019). Применение копула-функций в управлении риском портфеля акций // . № 15 (1). С. 33–58. DOI: 10.31085/1814-4802-2019-15-1-33-58
  16. 16. Pravdukhin M. M. (2019). Application of copula-functions in portfolio risk management. Finance and Business, 15 (1), 33–58. DOI: 10.31085/1814-4802-2019-15-1-33-58 (in Russian).
  17. 17. Фантаццини Д. (2011a). Моделирование многомерных распределений с использованием копула-функций. Часть I // . № 22 (2). С. 98–134.
  18. 18. Fantazzini D. (2011a). Analysis of multidimensional probability distributions with copula functions. Part I. Applied Econometrics, 22 (2), 98–134 (in Russian).
  19. 19. Фантаццини Д. (2011б). Моделирование многомерных распределений с использованием копула-функций. Часть II // . № 23 (3). С. 98–132.
  20. 20. Fantazzini D. (2011b). Analysis of multidimensional probability distributions with copula functions. Part II. Applied Econometrics, 23 (3), 98–132 (in Russian).
  21. 21. Фантаццини Д. (2011в). Моделирование многомерных распределений с использованием копула-функций. Часть III // . № 24 (4). С. 100–130.
  22. 22. Fantazzini D. (2011c). Analysis of multidimensional probability distributions with copula functions. Part II. Applied Econometrics, 24 (4), 100–130 (in Russian).
  23. 23. Algaralleh H., Canepa A. (2021). Evidence of stock market contagion during the COVID-19 pandemic: A wavelet-copula-GARCH approach. , 14 (7), 329. DOI: 10.3390/jrfm14070329
  24. 24. Benkraiem R., Garfatta R., Lakhal F., Zorgati I. (2022). Financial contagion intensity during the COVID-19 outbreak: A copula approach. , 81, 102136. DOI: 10.1016/j.irfa.2022.102136
  25. 25. Bollerslev T. (1986). Generalized autoregressive conditional heteroscedasticity. , 31 (3), 307–327. DOI: 10.1016/0304-4076 (86)90063-1
  26. 26. Chen S., Li Q., Wang Q., Zhang Y.Y. (2023). Multivariate models of commodity futures markets: A dynamic copula approach. , 64, 3037–3057. DOI: 10.1007/s00181-023-02373-2
  27. 27. Cubillos-Rocha J.S., Gomez-Gonzalez J.E., Melo-Velandia L.F. (2019). Detecting exchange rate contagion using copula functions. , 47, 13–22. DOI: 10.1016/j.najef.2018.12.001
  28. 28. Ding H., Kim H.-G., Park S.Y. (2016). Crude oil and stock markets: Causal relationships in tails? , 59, 58–69. DOI: 10.1016/j.eneco.2016.07.013
  29. 29. Engle R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. , 50 (4), 987–1007. DOI: 10.2307/1912773
  30. 30. Fenech J.-P., Vosgha H. (2019). Oil price and Gulf Corporation Council stock indices: New evidence from time-varying copula models. , 77, 81–91. DOI: 10.1016/j.econmod.2018.09.009
  31. 31. Forbes K., Rigobon R. (2002). No contagion, only interdependence: Measuring stock market co-movements. , 57 (5), 2223–2261. Available at: http://www.jstor.org/stable/3094510
  32. 32. Fry R., Martin V.L., Tang C. (2010). A new class of tests of contagion with applications. , 28 (3), 423–437. DOI: 10.1198/jbes.2010.06060
  33. 33. Fry-McKibbin R., Hsiao C.Y.L. (2018). Extremal dependence tests for contagion. , 37 (6), 626–649. DOI: 10.1080/07474938.2015.1122270
  34. 34. Gomez-Gonzalez J.E., Rojas-Espinosa W. (2019). Detecting contagion in Asian exchange rate markets using asymmetric DCC-GARCH and R-vine copulas. , 43 (3–4), 100717. DOI: 10.1016/j.ecosys.2019.100717
  35. 35. Jayech S. (2016). The contagion channels of July-August-2011 stock market crash: A DAG-copula based approach. , 249 (2), 631–646. DOI: 10.1016/j.ejor.2015.08.061
  36. 36. Lu Y., Xiao D., Zheng Z. (2023). Assessing stock market contagion and complex dynamic risk spillovers during COVID-19 pandemic. , 111, 8853–8880. DOI: 10.1007/s11071-023-08282-4
  37. 37. Luo C., Liu L., Wang D. (2021). Multiscale financial risk contagion between international stock markets: Evidence from EMD—Copula—CoVaR analysis. , 58, 101512. DOI: 10.1016/j.najef.2021.101512
  38. 38. Nelsen R.B. (2006). . 2 ed. N.Y.: Springer-Verlag. 272 p. DOI: 10.1007/0-387-28678-0
  39. 39. Rodriguez J.C. (2007). Measuring financial contagion: A copula approach. , 14 (3), 401–423. DOI: 10.1016/j.jempfin.2006.07.002
  40. 40. Tian M., Guo F., Niu R. (2022). Risk spillover analysis of China's financial sectors based on a new GARCH copula quantile regression model. , 63, 101817. DOI: 10.1016/j.najef.2022.101817
  41. 41. Wang H., Yuan Y., Li Y., Wang X. (2021). Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory. , 94, 401–414. DOI: 10.1016/j.econmod.2020.10.002
  42. 42. Wen X., Wei Y., Huang D. (2012). Measuring contagion between energy market and stock market during financial crisis: A copula approach. , 34 (5), 1435–1446. DOI: 10.1016/j.eneco.2012.06.021
  43. 43. Zhang P., Lv Z.-X., Pei Z., Zhao Y. (2023). Systemic risk spillover of financial institutions in China: A copula-DCC-GARCH approach. , 11 (2), 100078. DOI: 10.1016/j.jer.2023.100078
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library