1. Иващенко С.М. (2018). Экономическая политика России: модель с дискреционной политикой или с инструментальными правилами // Вестник СПбГУ. Экономика. Т. 34. Вып. 1. С. 149–172.
2. Adjemian S., BastaniH., JuillardM., KarameF., MihoubiF., PerendiaG., PfeiferJ., Ratto M., Villemot S. (2011). Dynare: Reference manual, Version 4. Dynare Working Papers, 1, CEPREMAP.
3. Bedard M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Annals of Applied Probability, 17, 4, 1222–1244.
4. Blanchard O., Kahn C. (1985). The solution of Linear Difference Models under rational expectations. Econometrica, 45, July, 1305–1311.
5. Chib S., Ramamurthy S. (2010). Tailored randomized block MCMC methods with application to DSGE models. Journal of Econometrics, 155, 1, 19–38.
6. Chopin N. (2011). Fast simulation of truncated Gaussian distributions. Statistics and Computing, 21, 2, 275–288.
7. Christiano L.J., Eichenbaum M., Trabandt M. (2016). Unemployment and business cycles. Econometrica, 84, 1523–1569.
8. Cotter S.L., Roberts G.O., Stuart A.M., White D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster. Statistical Science, 28, 3, 424–446.
9. Durmus A., Roberts G.O., Vilmart G., Zygalakis K.C. (2017). Fast Langevin based algorithm for MCMC in high dimensions. Annals of Applied Probability, 27, 4, 2195–2237.
10. Hammad Q. (2014). Explosive roots in level vector autoregressive models and vector error correction models. SSRN Electronic Journal, 10.2139/ssrn.2652306.
11. Herbst E., Schorfheide F. (2015). Bayesian estimation of DSGE models. Princeton: Princeton University Press.
12. Iskrev N. (2010). Local identification in DSGE models. Journal of Monetary Economics, 57, 2, 189–202.
13. Ivashchenko S., Mutschler W. (2020). The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models. Economic Modelling, 88, June, 280–292.
14. Jarner S., Roberts G. (2007). Convergence of heavy-tailed Monte Carlo Markov Chain Algorithms. Scandinavian Journal of Statistics, 34 (4), 781–815.
15. Lucas R.E. (1976). Econometric policy evaluation: A critique. Carnegie-Rochester Conference Series on Public Policy, 1, 1, 19–46.
16. Schmitt-Grohe S., Uribe M. (2004). Solving dynamic general equilibrium models using a second-order approximation to the policy function. Journal of Economic Dynamics and Control, 28, 4, 755–775.
17. Smets F., Wouters R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. American Economic Review, 97 (3), 586–606.
18. Sherlock C., Roberts G. (2009). Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15, 3 (August), 774–798.
19. Titsias M.K., Dellaportas P. (2019). Gradient-based adaptive Markov chain Monte Carlo. arXiv:1911.01373
20. Tovar C.E. (2009). DSGE models and central banks. Economics-The Open-Access, Open-Assessment E-Journal, 3 (16), 1–31.
Комментарии
Сообщения не найдены