1. Бахтизин А.Р. (2008). Агент-ориентированные модели экономики. М.: Экономика.
2. Бахтизин А.Р, Ильин Н.И., Хабриев Б.Р., Макаров В.Л., Сушко Е.Д. (2020). Программно-аналитический комплекс «МЁБИУС» – инструмент планирования, мониторинга и прогнозирования социально-экономической системы России // Искусственные общества. Т. 15. № 4.
3. Макаров В.Л., Бахтизин А.Р. (2013). Социальное моделирование — новый компьютерный прорыв (агент-ориентированные модели). М.: Экономика.
4. Макаров В.Л., Бахтизин А.Р., Бекларян Г.Л., Акопов А.С. (2019). Разработка программной платформы для крупномасштабного агент-ориентированного моделирования сложных социальных систем // Программная инженерия. Т. 10. № 4. С. 167–177. DOI: 10.17587/prin.10.167-177.
5. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д. (2020). Агент-ориентированная модель как инструмент регулирования экономики // Журнал Новой экономической ассоциации. № 45. С. 151–1712.
6. Макаров В.Л., Ву Ц., Ву З. и др. (2019). Современные инструменты оценки последствий мировых торговых войн // Вестник Российской академии наук. Т. 89. № 7. C. 745–754. DOI: 10.31857/S0869-5873897745-754
7. Макаров В.Л., Ву Ц., Ву З., Хабриев Б.Р., Бахтизин А.Р. (2020). Мировые торговые войны: сценарные расчеты последствий // Вестник Российской академии наук. Т. 90. № 2. C. 169–179.
8. Auld J., Hope M., Ley H., Sokolov V., Xua B., Zhang K. (2016). POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and op-erations simulations. Transportation Research Part C: Emerging Technologies, 64, March, 101–116.
9. Benenson I., Orner I., Hatna E. (2003). Agent-based modeling of householders’ migration behavior and its consequences. Contributions to Economics, 97–115. DOI: 10.1007/978-3-7908-2715-6_6
10. Billari F.C., Prskawetz A. (Eds.) (2003). Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour. Heidelberg: Physica-Verlag. 210 p.
11. Billari F.C., Prskawetz A., Diaz B.A., Fent T. (2007). The “Wedding-Ring”: An agent-based marriage model based on social interaction. Demographic Research, 17, 3, 59–82.
12. Boulmakoul A., Karim L., Lbath A. (2021). Vehicle-pedestrian interaction: Distributed intelligence framework. Procedia Computer Science, 184, 68–75. DOI: 10.1016/j.procs.2021.03.019
13. Brauer F. (2005). The Kermack-McKendrick epidemic model revisited. Mathematical Biosciences, 198, 2, 119–131. DOI: 10.1016/j.mbs.2005.07.006
14. Cockrell R.C., Christley S., Chang E., An G. (2015). Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEG-MEnT_HPC). PLOS ONE, 10(3): e0122192. DOI: 10.1371/journal.pone.0122192
15. Cook M. (2004). Universality in Elementary Cellular Automata. Complex Systems, 15.
16. Diaz B.A. (2010). Agent-based models on social interaction and demographic behaviour (Ph.D. Thesis). Wien: Technische Universität. 93 p.
17. Ehikioya S., Zhang C. (2018). Real-time multi-agents architecture for e-commerce servers. Interna-tional Journal of Networked and Distributed Computing, 6, 2, 88–98. DOI: 10.2991/ijndc.2018.6.2.4
18. Epstein J.M., Axtell R. (1996). Growing artificial societies: Social science from the bottom up. Washington: Brookings Institution Press, The MIT Press.
19. Epstein J.M. (1999). Agent-based computational models and generative social science. Complexity, 4, 5, 41–60. DOI: 10.1002/(SICI)1099-0526(199905/06)4:53.0.CO;2-F
20. Epstein J.M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton: Princeton University Press. 352 p.
21. Epstein J.M. (2009). Modeling to contain pandemics. Nature, 460, 687 (2009). DOI: org/10.1038/460687a
22. Epstein J.M. (2013). Agent_Zero: Toward neurocognitive foundations for generative social science. Princeton: Princeton University Press. 249 p.
23. Epstein J.M., Hatna E., Crodelle J. (2021). Triple contagion: A two-fears epidemic model. Journal of the Royal Society Interface, 18, 81. DOI: 10.1098/rsif.2021.0186
24. Epstein J.M., Pankajakshan R., Hammond R.A. (2011). Combining computational fluid dynamics and agent-based modeling: A new approach to evacuation planning. PLOS ONE, 6, 5. e20139. DOI: 10.1371/journal.pone.0020139
25. Epstein J.M., Parker J., Cummings D., Hammond R.A. (2008). Coupled contagion dynamics of fear and disease: Mathematical and computational explorations. PLOS ONE, 3, 12. e3955. DOI: 10.1371/journal.pone.0003955
26. Gardner M. (1970). The fantastic combinations of John Conway's new solitaire game “life”. Scientific American, 4, October.
27. Guerrero O.A., Axtell R.L. (2011). Using agentization for exploring firm and labor dynamics. In: S. Osinga, G. Hofstede, T. Verwaart (Eds.) Emergent results of artificial economics. Lecture notes in economics and mathematical systems, vol. 652. Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-21108-9_12
28. Hatna E., Benenson I. (2015). Combining segregation and integration: Schelling model dynamics for heterogeneous population. Journal of Artificial Societies and Social Simulation, 18 (4), 15. Available at: http://jasss.soc.surrey.ac.uk/18/4/15.html DOI: 10.18564/jasss.2824
29. Ilie S., Bădică C. (2010). Distributed multi-agent system for solving traveling salesman problem using ant colony optimization. In: M. Essaaidi, M. Malgeri, C. Badica (Eds.). Intelligent distributed computing IV. Studies in computational intelligence, vol. 315. Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-15211-5_13
30. Ilie S, Bădică C. (2013). Multi-agent distributed framework for swarm intelligence. Procedia Computer Science, 18, 611–620. DOI: 10.1016/j.procs.2013.05.225
31. Janbi N., Katib I., Albeshri A., Mehmood R. (2020). Distributed artificial intelligence-as-a-service (DAIaaS) for smarter IoE and 6G Environments. Sensors, 20 (20), 5796. DOI: 10.3390/s20205796
32. Kermack W.O., McKendrick A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, 115, 772, 700–721, 1927. DOI: 10.1098/rspa.1927.0118
33. Langton C.G. (1989). Artificial life. In: C.G. Langton (Ed.). Artificial Life. SFI Studies in the Sciences of Complexity. Vol. VI. Cambridge, London: Addison-Wesley.
34. Lewis B., Swarup S., Bisset K., Eubank S., Marathe M., Barrett C. (2013). A simulation environ-ment for the dynamic evaluation of disaster preparedness policies and interventions. Journal of Public Health Management and Practice (JPHMP), 19, Suppl. 2 (02), S42–S48. DOI: 10.1097/PHH.0b013e31829398eb
35. Longini I.M., Halloran M.E., Nizam A., Yang Y., Xu S., Burke D.S., Cummings D.A., Epstein J.M. (2007). Containing a large bioterrorist smallpox attack: A computer simulation approach. International Journal of Infectious Diseases, 11, 2, 98–108. DOI: 10.1016/j.ijid.2006.03.002
36. Lubaś R., Wąs J., Porzycki J. (2016). Cellular automata as the basis of effective and realistic agent-based models of crowd behavior. The Journal of Supercomputing, 72, 6, 2170–2196. DOI: 10.1007/s11227-016-1718-7
37. Makinoshima F., Imamura F., Abe Y. (2018). Enhancing a tsunami evacuation simulation for a multi-scenario analysis using parallel computing. Simulation Modeling Practice and Theory, 83, 36–50. DOI: 10.1016/j.simpat.2017.12.016.
38. Monticino M.G., Brooks E., Cogdill T., Acevedo M., Callicott B. (2006). Applying a multi-agent model to evaluate effects of development proposals and growth management policies on subur-ban sprawl. Proc. of the international environmental modelling and software society. Summit on Environmental modelling and software. Burlington (USA).
39. Owaidah A., Olaru D., Bennamoun M., Sohel F., Khan N. (2019). Review of modelling and simulating crowds at mass gathering events: Hajj as a case study. Journal of Artificial Societies and Social Simulation, 22 (2), 9. Available at: http://jasss.soc.surrey.ac.uk/22/2/9.html DOI: 10.18564/jasss.3997.
40. Parker J., Epstein J.M. (2011). A distributed platform for global-scale agent-based models of disease transmission. ACM transactions on modeling and computer simulation: A publication of the Association for computing machinery, 22 (1), 2. DOI: 10.1145/2043635.2043637
41. Pérez-Rodríguez G., Pérez-Pérez M., Fdez-Riverola F., Lourenço A. (2016). High performance computing for three-dimensional agent-based molecular models. Journal of Molecular Graphics and Modelling, 68, 68–77.
42. Piontti A.P., Perra N., Rossi L., Samay N., Vespignani A. (2018). Charting the next pandemic: Modeling infectious disease spreading in the data science age. Social Sciences. Springer Inter-nat. Publishing. DOI: 10.1007/978-3-319-93290-3
43. Pourhasanzade F., Sabzpoushan S., Alizadeh A.M., Esmati E. (2017). An agent-based model of avascular tumor growth: Immune response tendency to prevent cancer development. Simulation, 93 (8), 641–657. DOI: 10.1177/0037549717699072
44. Reynolds C.W. (1987). Flocks, herds, and schools: A distributed behavioral model. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). ACM, 21 (4), 25–34. DOI: 10.1145/37401.37406
45. Rui Y., Ban Y. (2010). Multi-agent simulation for modeling urban sprawl in the greater toronto area. Proc. of the 13th AGILE International Conference on Geographic Information Science. Gui-marães (Portugal).
46. Sabzpoushan S.H., Pourhasanzade F. (2018). A new method for shrinking tumor based on microen-vironmental factors: Introducing a stochastic agent-based model of avascular tumor growth. Physica A: Statistical Mechanics and its Applications, 508, 771–787. DOI: 10.1016/j.physa.2018.05.131
47. Semboloni F., Assfalg J., Armeni S., Gianassi R., Marsoni F. (2004). CityDev, an interactive multi-agents urban model on the web. Computers, Environment and Urban Systems, 28, 1, 45–64.
48. Schelling T.C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1 (2), 143–186.
49. Silverman E., Bijak J., Hilton J., Cao V.D., Noble J. (2013). When demography met social simulation: A tale of two modelling approaches. Journal of Artificial Societies and Social Simulation (JASSS), 16 (4), 9. Available at: http://jasss.soc.surrey.ac.uk/16/4/9.html
50. Silverman E., Bijak J., Noble J., Cao V., Hilton J. (2014). Semi-artificial models of populations: Connecting demography with agent-based modelling. In: S.-H. Chen et al. (Eds.). Advances in computational social science: The Fourth world congress. Agent-Based Social Systems 11, Springer Japan, 177–189. DOI: 10.1007/978-4-431-54847-8_12
51. Sugumaran V. (2009). Distributed artificial intelligence, agent technology, and collaborative applications. IGI Global. DOI: 10.4018/978-1-60566-144-5
52. Suzumura T., Kato S., Imamichi T., Takeuchi M., Kanezashi H., Ide T., Onodera T. (2012). X10-based massive parallel large-scale traffic flow simulation. In: Proceedings of the 2012 ACM SIGPLAN X10 Workshop (X10 '12). Association for Computing Machinery. New York, USA. Article 3, 1–4. DOI: 10.1145/2246056.2246059
53. Waldrop M.M. (2018). What if a nuke goes off in Washington, D.C.? Simulations of artificial societies help planners cope with the unthinkable. Science AAAS by M. Mitchell Waldrop. Apr. 12. DOI:10.1126/science.aat8553
54. Wolfram S. (2002). A new kind of science. Wolfram Media. ISBN: 1-57955-008-8. Available at: www.wolframscience.com
55. Yadav S.P., Mahato D.P., Linh N.T.D. (Eds.) (2020). Distributed artificial intelligence: A modern approach. 1st ed. CRC Press. DOI: 10.1201/9781003038467
Комментарии
Сообщения не найдены