1. REFERENCES (with English translation or transliteration) Afik, Z., Arad, O., Galil, K. (2016). Using Merton model for default prediction: An empirical assessment of selected alternatives // Journal of Empirical Finance. Vol. 35, P. 43-67. DOI: https://doi.org/10.1016/j.jempfin.2015.09.004
2. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // The Journal of Finance. Vol. 23. No. 4. P. 589-609. DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
3. Balcaen, S., Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems // The British Accounting Reviev. Vol. 38. No. 1. P. 63-93. DOI: https://doi.org/10.1016/j.bar.2005.09.001
4. Beaver, W. (1966). Financial ratios as predictors of failure // Journal of accounting research. Vol. 71-111. DOI: https://doi.org/10.2307/2490171
5. Chava, S., Jarrow, R. A. (2004). Bankruptcy prediction with industry effects // Review of Finance. Vol. 8. No. 4. P. 537-569. DOI: https://doi.org/10.1093/rof/8.4.537
6. Danenas, P., Garsva, G. (2015). Selection of support vector machines based classifiers for credit risk domain // Expert Systems with Applications. Vol. 42. No. 6. P. 3194-3204. DOI: https://doi.org/10.1016/j.eswa.2014.12.001
7. Demeshev, B., Tikhonova, A. (2014). Default Prediction for Russian Companies: Intersectoral Comparison // HSE Economic Journal. Vol. 18. No. 3. P. 359-386. (in Russian).
8. Ding, A. A., Tian, S., Yu, Y., Guo, H. (2012). A class of discrete transformation survival models with application to default probability prediction // Journal of the American Statistical Association. Vol. 107. No. 499. P. 990-1003. DOI: https://doi.org/10.1080/01621459.2012.682806
9. Drobyshevsky, S., Zubarev, A. (2011). Sustainability of Russian Banks in 2007-2009 (p. 108). Moskva: Gaidar Inst.
10. Du, Jardine. P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy // Neurocomputing. Vol. 73. No. 10-12. P. 2047-2060. DOI: https://doi.org/10.1016/j.neucom.2009.11.034
11. Fedorova, E., Timofeev, Ya. (2015). Developing the bankruptcy prediction models for russian businesses of the construction and agriculture industries // Finance and Credit. Vol. 32. No. 656. P. 2-10. (in Russian).
12. Gepp, A., Kumar, K. (2012). Business failure prediction using statistical techniques: A review // Some recent developments in statistical theory and applications. P. 1-25.
13. Hillegeist, S. A., Keating, E. K., Cram, D. P., Lundstedt, K. G. (2004). Assessing the probability of bankruptcy // Review of accounting studies. Vol. 9. No. 1. P. 5-34. DOI: https://doi.org/10.1023/B:RAST.0000013627.90884.b7
14. Jabeur, S. B. (2017). Bankruptcy prediction using partial least squares logistic regression // Journal of Retailing and Consumer Services. Vol. 36. P. 197-202. DOI: https://doi.org/10.1016/j.jretconser.2017.02.005
15. Karas, M., Srbov?, P. (2019). Predicting bankruptcy in construction business: Traditional model validation and formulation of a new model // Journal of International studies. Vol. 12. No. 1. P. 283-296. DOI: https://doi.org/10.14254/2071-8330.2019/12-1/19
16. Lee, S., Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis // Expert Systems with Applications. Vol. 40. No. 8. P. 2941-2946. DOI: https://doi.org/10.1016/j.eswa.2012.12.009
17. Lensberg, T., Eilifsen, A., McKee, T. E. (2006). Bankruptcy theory development and classification via genetic programming // European Journal of operational research. Vol. 169. No. 2. P. 677-697. DOI: https://doi.org/10.1016/j.ejor.2004.06.013
18. Lin, T. H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models // Neurocomputing. Vol. 72. No. 16-18. P. 3507-3516. DOI: https://doi.org/10.1016/j.neucom.2009.02.018
19. Makeeva, E., Bakurova, A. (2012). Forecasting Bankruptcy Oil and Gas Companies Using Neural Networks // Journal of Corporate Finance Research. Vol. 6. No. 3. P. 22-29. (in Russian). DOI: https://doi.org/10.17323/j.jcfr.2073-0438.6.3.2012.22-30
20. Makeeva, E. U., Neretina, E. A. (2013a). A binary model versus discriminant analysis relating to corporate bankruptcies: the case of Russian construction industry // Journal of Accounting, Finance and Economics. Vol. 3. No. 1. P. 65-76.
21. Makeeva, E., Neretina, E. (2013b). The prediction of bankruptcy in a construction industry of Russian Federation // Journal of Modern Accounting and Auditing. Vol. 9. No. 2. P. 256-271.
22. Martin, D. (1977). Early warning of bank failure: A logit regression approach // Journal of banking & finance. Vol. 1. No. 3. P. 249-276. DOI: https://doi.org/10.1016/0378-4266 (77)90022-X
23. Min, S. H., Lee, J., Han, I. (2006). Hybrid genetic algorithms and support vector machines for bankruptcy prediction // Expert systems with applications. Vol. 31. No. 3. P. 652-660. DOI: https://doi.org/10.1016/j.eswa.2005.09.070
24. Mogilat, A. (2019). Modelling financial distress of Russian industrial companies, or What bankruptcy analysis can tell // Voprosy Ekonomiki. No. 3. P. 101-118. (in Russian). DOI: https://doi.org/10.32609/0042-8736-2019-3-101-118
25. Odom, M. D., Sharda, R. (1990). A neural network model for bankruptcy prediction // IJCNN International Joint Conference on neural networks. P. 163-168. DOI: https://doi.org/10.1109/IJCNN.1990.137710
26. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy // Journal of accounting research. Vol. 18. No. 1. P. 109-131. DOI: https://doi.org/10.2307/2490395
27. Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model // The journal of business. Vol. 74. No. 1. P. 101-124. DOI: https://doi.org/10.2139/ssrn.171436
28. Slowinski, R., Zopounidis, C. (1995). Application of the rough set approach to evaluation of bankruptcy risk // Intelligent Systems in Accounting, Finance and Management. Vol. 4. No. 1. P. 27-41. DOI: https://doi.org/10.1002/j.1099-1174.1995.tb00078.x
29. Sternik, S., Sternik, G. (2018). Methods of forecasting the input volume in the local market of housing construction and sales // Russian Journal of Housing Research. Vol. 5. No. 2. P. 131-151. (in Russian).
30. Zhdanov, V., Afanasyeva, O. (2011). Bankruptcy Risk Diagnostics Model for Aviation Enterprises // Journal of Corporate Finance Research. Vol. 20. No. 4. P. 77Ð89. (in Russian). DOI: https://doi.org/10.17323/j.jcfr.2073-0438.5.4.2011.77-89
31. Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models // Journal of Accounting research. Vol. 22. P. 59-82. DOI: https://doi.org/10.2307/2490859
Comments
No posts found