"ANATOMY" OF THE PRODUCTION FUNCTION: TECHNOLOGICAL MENU AND SELECTION OF THE BEST TECHNOLOGY
Table of contents
Share
QR
Metrics
"ANATOMY" OF THE PRODUCTION FUNCTION: TECHNOLOGICAL MENU AND SELECTION OF THE BEST TECHNOLOGY
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Edition
Pages
85-95
Abstract
The paper studies a representation of a “global” production function as a maximum of local production functions under a choice of technological coefficients from a given set – a technological menu. It is shown that such a representation takes place if the technological menu is a support set of the global production function. A representation of global Cobb-Douglas and CES production functions in such form is considered in details.
Keywords
-
Date of publication
01.04.2009
Number of purchasers
0
Views
851
Readers community rating
0.0 (0 votes)
Cite   Download pdf
1

References



Additional sources and materials

Abasov T.M., Rubinov A.M. (1995): Subdifferentsialy nekotorykh klassov negladkikh funktsij // Voprosy mekhaniki i protsessov upravleniya. № 16.
Ashmanov S.A. (1984): Vvedenie v matematicheskuyu ehkonomiku. M.: Nauka.
Klejner G.B. (1986): Proizvodstvennye funktsii: teoriya, metody, primenenie. M.: Fin. i stat.
Makarov V.L., Rubinov A.M. (1973): Matematicheskaya teoriya ehkonomicheskoj dinamiki i ravnovesiya. M.: Nauka.
Acemoglu D. (2003): Labor and CapitalAugmenting Technical Change // J. of the European Econ. Association. Vol. 1. № 1.
Antrás P. (2004): Is the U.S. Aggregate Production Function Cobb–Douglas? New Estimates of the Elasticity of Substitution // Contributions to Macroeconomics. Vol. 4. № 1.
Duffy J., Papageorgiou Ch. (2000): A CrossCountry Empirical Investigation of the Aggregate Production Function Specification // J. of Econ. Growth. Vol. 5.
Growiec J. (2008): A New Class of Production Functions and an Argument Against Purely LaborAugmenting Technical Change // International J. of Econ. Theory. Vol. 4. № 4.
Houthakker H.S. (1955–1956): The Pareto Distribution and the Cobb–Douglas Production Function in Activity Analysis // Rev. of Econ. Stud. Vol. 23. № 1.
Jalava J., Pohjola M., Ripatti A., Vilmunen J. (2006): Biased Technical Change and Capital Labor Substitution in Finland, 1902–2003 // Topics in Macroeconomics. Vol. 6. № 1.
Jones C.I. (2005): The Shape of Production Function and the Direction of Technical Change // Quarterly J. of Econ. Vol. 120. № 2.
Klenow P.J., Rodriguez<Clare A. (1997): The Neoclassical Revival in Growth Economics: Has it Gone Too Far? // NBER Macroeconomic Annual. Vol. 12.
Klump R., McAdam P., Willman A. (2004): Factor Substitution and Factor Augmenting Technical Progress in the US: A Normalized SupplySide System Approach // European Central Bank Working Paper Series. № 367.
Matveenko V. (1997): On a Dual Representation of CRS Functions by Use of Leontief Functions. In: “Proceedings of the First International Conference on Mathematical Economics, NonSmooth Analysis, and Informatics”. Baku,
Azerbaijan.
Rubinov A.M., Glover B.M. (1998): Duality for Increasing Positively Homogeneous Functions and Normal Sets // Operations Res. Vol. 12. № 2.

Comments

No posts found

Write a review
Translate