BUDGET CHARACTERIZATION OF NEUMANN-GALE MODEL IN CONTINUOUS TIME
Table of contents
Share
QR
Metrics
BUDGET CHARACTERIZATION OF NEUMANN-GALE MODEL IN CONTINUOUS TIME
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
75-91
Abstract
A version of Neumann-Gale model in continuous time is formulated and it is given its description by term of "budget" functions - potential function G and cost function g. These functions are the solutions of direct and inverse Bellman's equations, and they determine as the whole limits attainable domain ω(x) for discounted trajectories issuing from arbitrary initial point x in phase space. Results of the article expand to continuous version well known properties of NG-model in discrete time.
Keywords
Date of publication
01.01.2010
Number of purchasers
2
Views
780
Readers community rating
0.0 (0 votes)
Cite   Download pdf
1

References



Additional sources and materials

Belen'kij V.Z. (1981): Statsionarnye modeli ehkonomicheskoj dinamiki. M.: TsEhMI AN SSSR (preprint).
Belen'kij V.Z. (1990): Ehkonomicheskaya dinamika: obobschayuschaya "byudzhetnaya" faktorizatsiya gejlovskoj tekhnologii // Ehkonomika i mat. metody. T. 26. Vyp. 1.
Belen'kij V.Z. (2006): Operatsiya ratio-sopryazheniya i ee primenenie v linejno-odnorodnykh modelyakh ehkonomiki //Ehkonomika i mat. metody. T. 42. № 2.
Belen'kij V.Z. (2007): Optimizatsionnye modeli ehkonomicheskoj dinamiki. M.: Nauka.
Dyukalov A.N., Ilyutovich A.E. (1973): Asimptoticheskie svojstva optimal'nykh traektorij ehkonomicheskoj dinamiki // Avtomatika i telemekhanika. № 3.
Dyukalov A.N., Ilyutovich A.E. (1974): Magistral'nye svojstva optimal'nykh traektorij dinamicheskoj modeli mezhotraslevogo balansa v nepreryvnom vremeni // Avtomatika i telemekhanika. № 12.
Karlin S. (1964): Matematicheskie metody v teorii igr, programmirovanii i ehkonomike. M.: Mir.
Ketova K.V. (2008): Razrabotka metodov issledovaniya i optimizatsiya strategii razvitiya ehkonomicheskoj sistemy regiona: Dis.... d-ra fiz.-mat. nauk. Izhevsk: IzhGTU.
Klark F. (1988): Optimizatsiya i negladkij analiz. M.: Nauka.
Makarov V.L. (1969): Modeli optimal'nogo rosta ehkonomiki // Ehkonomika i mat. metody. T. 5. Vyp. 4.
Makarov V.L., Rubinov A.M. (1973): Matematicheskaya teoriya ehkonomicheskoj dinamiki i ravnovesiya. M.: Nauka.
Malyshev N.E. (2009): Postroenie potentsial'noj funktsii v nepreryvnoj modeli Nejmana-Gejla s mnogofaktornoj proizvodstvennoj funktsiej. V sb.: "Analiz i modelirovanie ehkonomicheskikh protsessov". Vyp. 6. M.: TsEhMI RAN.
Yakovenko S.Yu. (1986): O modelyakh Nejmana-Gejla, funktsioniruyuschikh v nepreryvnom vremeni // DAN SSSR. T. 291. № 4.
Yakovenko S.Yu. (1987): Asimptotika optimal'nykh traektorij v gejlovskikh modelyakh, funktsioniruyuschikh v nepreryvnom vremeni // Avtomatika i telemekhanika. № 8.
Yakovenko S.Yu. (1989): Nepodvizhnye tochki polugruppy operatorov Bellmana i invariantnye mnogoobraziya gamil'tonovykh subdifferentsial'nykh uravnenij // Avtomatika i telemekhanika. № 6.
Rockafellar R.T. (1970): Conjugate Convex Functions in Optimal Control and the Calculus of Variations // Journal Math. Anal. Appl. Vol. 32. № 1.
Rockafellar R.T. (1971): Existence and Duality Theory for Convex Problems of Bolza // Trans. Amer. Math. Soc. № 159.

Comments

No posts found

Write a review
Translate