1. Gaminha B., Gaspar R.M., Oliveira O. (2015). LIBOR convexity adjustments for the Vasicek and Cox-ingersoll-ross models. Available at: https://ssrn.com/abstract=2677712
2. Geman H., Karoui El N., Rochet J.-C. (1995). Changes of numeraire, changes of probability measure and option pricing. Journal of Applied Probability, 32 (2), 443–458.
3. Hagan P. (2003). Convexity conundrums: Pricing CMS swaps, caps, and floors. Wilmott Magazine, 2, 38–44.
4. Hsieh T.-Y., Chou C.-H., Chen S.-N. (2015). Quanto interest-rate exchange options in a cross-currency LIBOR market model. Asian Economic and Financial Review, 5 (5), 816–830.
5. Hull J.C. (2017). Options, futures, and other derivatives. New York: Pearson Education.
6. Lin H.-J. (2012). An easy method to price quanto forward contracts in the HJM model with stochastic interest rates. International Journal of Pure and Applied Mathematics, 76 (4), 549–557.
7. Malykh N.O., Postevoy I.S. (2019). Calculation of the convexity adjustment to the forward rate in the Vasicek model for the forward in-arrears contracts on LIBOR rate. Theory of Probability and Mathematical Statistics, 99, 189–198. Available at: https://www.ams.org/journals/tpms/2019-99-00/S0094-9000-2020-01089-9/
8. Mcinerney D., Zastawniak T. (2015). Stochastic Interest Rates. Cambridge: Cambridge University Press.
9. Pelsser A. (2003). Mathematical foundation of convexity correction. Quantitative Finance, 3 (1), 59–65.
10. Privault N. (2012). An elementary introduction to stochastic interest rate modeling. Singapore: World Scientific Publishing Co. Pte. Ltd.
11. Vasicek O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5 (2), 177–188.
Комментарии
Сообщения не найдены