Дано краткое описание предложенного Е.Г. Гольштейном приближенного метода решения конечной бескоалиционной игры трех лиц в смешанных стратегиях. Поиск решения игры сводится к итеративному поиску глобального минимума так называемой функции Нэша, являющейся мерой близости точки к множеству решений игры и имеющей большое число локальных минимумов, не совпадающих с глобальным минимумом. Тем не менее, минимизация этой функции по одной из трех переменных (стратегий) при фиксации двух других переменных легко сводится к линейному программированию. Осуществляя перебор начальных пар чистых стратегий и решая на каждой итерации три задачи линейного программирования, метод отыскивает точное решение игры, если выполнено условие дополнительности, либо приемлемое приближение к множеству точек Нэша при незначительном нарушении условия дополнительности. Численное тестирование метода на двух семействах сгенерированных игр выявило его достоинства и недостатки. Предлагаемый метод эффективен при независимых или мало зависимых таблицах, определяющих выигрыши игроков. При росте коэффициента взаимозависимости таблиц эффективность метода снижается.
Комментарии
Сообщения не найдены