AREAS OF CONDORSES AND ROMBIC PARQUETS
Table of contents
Share
QR
Metrics
AREAS OF CONDORSES AND ROMBIC PARQUETS
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Edition
Pages
55-68
Abstract
A Condorcet domain is such a set of linear orders on a set of alternatives, in which the simple majority rule does not give cycles. With simple geometric shapes - rhombic parquets - we build and explore large areas of Condorcet properties.
Keywords
linear orders, simple majority rule, weak order Bruhat
Date of publication
01.10.2010
Number of purchasers
2
Views
861
Readers community rating
0.0 (0 votes)
Cite   Download pdf
1

References



Additional sources and materials

Abello J.M. (1991): The Weak Bruhat Order on Sn, Consistent Sets, and Catalan Numbers // SIAM Journal on Discrete Mathematics. Vol. 4.
Black D. (1948): On the Rationale of Group Decision-Making // Journal of Polit. Econ. Vol. 56. Chameni-Nembua C. (1989): Regle Majoritaire et Distributivite Dans le Permutoedre // Mathematiques Informatique et Sciences Humaines. Vol. 108.
Condorcet M. (1785): Essai sur l’application de l’analyse a la Probabilite des Decisions Rendues a la Pluralitedes Voix. Paris.
Danilov V., Karzanov A., Koshevoy G. (2009): Tropical Plucker Functions and Their Bases. In: “Tropical and Idempotent Mathematics” // Contemporary Mathematics. Vol. 495.
Galambos A., Reiner V. (2008): Acyclic Sets of Linear Orders Via the Bruhat Order // Social Choice and Welfare. Vol. 30.
Guilbaud G.-Th. (1952): Les theories de l’interet general et le probleme logique de l’agregation // Ecomomie Appliquee. Vol. 5. (Rus. perevod sm.: Matematicheskie metody v sotsial'nykh naukakh. M.: Progress, 1973.)
Fishburn P. (1997): Acyclic Sets of Linear Orders // Social Choice and Welfare. Vol. 14.
Knuth D.E. (1992): Axioms and Hulls. № 606 in Lecture Notes in Computer Science. Berlin: Springer-Verlag.
Monjardet B. (2009): Acyclic Domauns of Linear Orders: a Survey. In: “The Mathematics of Preference, Choice and Order”. Berlin: Springer. P. 136–160.
Saari D.G. (2009): Condorcet Domains; A geometric Perspective. In: “The Mathematics of Preference, Choice and Order”. Berlin: Springer. P. 161–182.

Comments

No posts found

Write a review
Translate