1. International Valuation Standards 2017. International Valuation Standards Council: London. 2017. 119 p.
2. European Valuation Standards 2016. Eighth edition. TEGoVA. 2016. 376 p.
3. Federal Law "On appraisal activities in the Russian Federation" dated July 29, 1998. No. 135-FZ (with subsequent amendments and additions). (in Russian).
4. Federal Valuation Standard No 1. General concepts of valuation, approaches and requirements for valuation conducting. Order of the Ministry of Economic Development of Russia of 20.05.2015 No 297. (in Russian).
5. Standard on Automated Valuation Models (AVMs). International Association of Assessing Officers. 2018. https://www.iaao.org/media/standards/AVM_STANDARD_2018.pdf
6. Anatolyev S. (2009). Nonparametric regression // Quantile. No 7. Pp. 37 52. (in Russian).
7. Birke M. & Dette H. (2007). Estimating of convex functions in nonparametric regression // Scandinavian Journal of Statistics. No 34. Pp. 384 404.
8. Chen Y.C., Genovese C.R., Tibshirani R.J. and Wasserman L. (2016). Nonparametric Modal Regression // The Annals of Statistics, Vol. 44, No. 2. Pp. 489514.
9. Cule M., Samworth R. and Stewart M. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density // Journal of the Royal Statistical Society, Series B (with discussion). Vol. 72. Pp. 545 607.
10. Dumbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency // Bernoulli, 15, No 1, pp. 40 68.
11. Dumbgen, L., Samworth, R. and Schuhmacher, D. (2011) Approximation by log-concave distributions with applications to regression // The Annals of Statistics. Vol. 29. Pp. 702 730.
12. Grenander U. (1956) On the theory of mortality measurement II. Skandinavisk Aktuarietidskrift, Vol. 39. Pp. 125 153.
13. Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory // The Annals of Statistics. Vol. 29. Pp. 1653 1698.
14. Hardle W. (1990). Applied nonparametric regression. Cambridge University Press. 333 p.
15. Hildreth C. (1954). Point estimates of ordinate of concave functions // Journal of American Statistics Association. No 49. Pp. 598-619.
16. Kendall M.G., Stuart A. (1973). The advanced theory of statistics. Vol.2. Inference and relationship. Charles Griffin & Co. London. 758 p.
17. Kleiner G.B., Smolyak S.A. (2000). Econometric dependencies: principles and methods of construction. M.: Nauka. 104 p. (in Russian).
18. Lee M-J. (1989). Mode regression. // Journal of Econometrics, Vol. 42(3). Pp. 337349.
19. Racine J.S. (2008). Nonparametric econometrics: a primer // Quantile. No 4. Pp. 7 56.
20. Sager T.W. and Thisted R.A. (1982). Maximum likelihood estimation of isotonic modal regression. // The Annals of Statistics, Vol. 10(3). Pp. 690707.
21. Smolyak S.A. (2017). On the problems of regression building. In the collection: X anniversary Volga scientific-practical conference "Mathematical methods and models in the Russian valuation. New ideas, approaches and methods. 10 years from theory to practice. [Electronic version of the conference materials]. Volga Center for methodical and informational support of valuation. Nizhny Novgorod. http://inform-ocenka.ru/x_ñonference_materials/ (in Russian).
22. Seijo S. & Sen B. (2011). Nonparametric least squares estimation of a multivariate convex regression function // The Annals of Statistics. Vol.39. No 3. Pp. 1633 1657.
23. Yao W. and Li L. (2014). A New Regression Model: Modal Linear Regression // Scandinavian Journal of Statistics. Vol. 41(3). Pp. 656671.
Comments
No posts found