APPLICATION OF METAHEURISTIC ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM
Table of contents
Share
QR
Metrics
APPLICATION OF METAHEURISTIC ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
117-126
Abstract

The paper observes modern metaheuristics for the vehicle routing problem. Given a brief survey of the principle metaheuristic algorithms, as well as a detailed description of the ant colony optimization algorithm. The modification of ant colony optimization algorithm proposed, the effectiveness of which is confirmed by the computational results.

Keywords
vehicle routing problem, metaheuristic algorithms, ant colony optimization
Date of publication
01.01.2014
Number of purchasers
1
Views
781
Readers community rating
0.0 (0 votes)
Cite   Download pdf Download JATS

References



Additional sources and materials

Batischev D.I. (1995). Geneticheskie algoritmy resheniya ehkstremal'nykh zadach. Voronezh: VGTU.

Bauehrsoks D., Kloss D. (2008). Logistika: integrirovannaya tsep' postavok. M.: ZAO “Olimp-biznes”.

Gol'shtejn E.G., Yudin D.B. (1969). Zadachi linejnogo programmirovaniya transportnogo tipa. M.: Nauka.

Slastnikov S.A. (2012). Analiz ehvristicheskikh i metaehvristicheskikh metodov dlya resheniya zadachi raspredeleniya avtomobil'nogo topliva // Kachestvo. Innovatsii. Obrazovanie. № 11.

Bell J., McMullen P. (2004). Ant Colony Optimization Techniques for the Vehicle Routing Problem // Advanced Engineering Informatics. No. 18.

Colorni A., Dorigo M., Maniezzo V. (1991). Distributed Optimization by Ant Colonies. In: “Actes de la Première Conférence Européenne sur la Vie Artificielle”. Paris: Elsevier Publishing.

Dorigo M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italie.

Dorigo M., Gambardella L.M. (1997). Ant Colonies for the Traveling Salesman Problem // BioSystems. No. 43.

Dueck G. (1993). New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel // J. of Computational Physics. No. 104.

Dueck G., Scheurer T. (1990). Threshold Accepting: A General Purpose Optimization Algorithm // J. of Computational Physics. No. 90.

Gendreau M., Hertz A., Laporte G. (1991). A Tabu Search Heuristic for the Vehicle Routing Problem // Management Science. Vol. 40. No. 10.

Glover F. (1986). Future Paths for Integer Programming and Links to Artificial Intelligence // Computer and Operations Research. Vol. 13. No. 5.

Glover F. (1989). Tabu Search // INFORMS J. on Computing. Part 1: Vol. 1. № 3; Part 2: Vol. 2. No. 1.

Holland J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.

Kirkpatrick S., Gelatt C., Vecchi M. (1983). Optimization by Simulated Annealing // Science, New Series. Vol. 220. No. 4598.

Laporte G., Gendreau M., Potvin J., Semet F. (2000). Classical and Modern Heuristics for the Vehicle Routing Problem // International Transactions in Operation Research. No. 7.

Laporte G., Semet F. (1999). Classical Heuristics for the Vehicle Routing Problem // Les Cahiers du Gerad. G-98-54.

Rego C., Roucairol C. (1996). A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle Routing Problem. In: “Meta-Heuristics: Theory and Applications” Osman I.H., Kelly J.P. (eds.). Boston: Kluwer Academic Publishers.

Rochat Y., Taillard E. (1995). Probabilistic Diversification and Intensification in Local Search for Vehicle Routing // J. of Heuristics. No. 1.

Toth P., Vigo D. (1998). The Granular Tabu Search (and its Application to the Vehicle Routing Problem). Technical Report OR/98/9, Dipartimento di Elettronica, Informatica e Sistemistica, Universita di Bologna.

Toth P., Vigo D. (2002). The vehicle routing problem. Philadelphia: SIAM Monographs on Discrete Mathematics and Applications.

Xu J., Kelly J. (1996). A Network Flow-Based Tabu Search Heuristic for the Vehicle Routing Problem // Transportation Science. Vol. 30. No. 4.

Comments

No posts found

Write a review
Translate