RAS Social ScienceЭкономика и математические методы Economics and the Mathematical Methods

  • ISSN (Print) 0424-7388
  • ISSN (Online) 3034-6177

Calibration of ARIMA-GARCH-model of basic asset price based on market option quotes

PII
S30346177S0424738825030096-1
DOI
10.7868/S3034617725030096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
104-115
Abstract
The paper is devoted to the study of the possibility of calibrating the time series model of the underlying asset on the basis of market quotes of options on this asset. Market prices of options reflect the expectations of traders on the future dynamics of the underlying asset. At the beginning of the paper we present the general form of the ARIMA-GARCH time series model, as well as the form of the ARMA-GARCH model corresponding to the martingale risk-neutral probability measure. Next, the paper presents the formulation of the optimization problem of calibrating the risk-neutral model of logarithmic returns of the underlying asset based on the market prices of European options using the Monte Carlo method. The method of stochastic gradient approximation projection is applied to solve the problem. It is then shown how the form of the model changes when switching from a risk-neutral to a risk-averse probability measure under the assumption of the agent’s power utility function. The paper presents the results of calibrating the models on historical data on the quoted prices of the S&P500 index and the prices of European options on this index over the period from 2019 to 2023. Finally, the statistical test of Crnkovic–Drachman is performed to assess the accuracy of the calibrated models of the underlying asset returns for different future points in time.
Keywords
опционы прогнозирование риск-нейтральность чувствительность к риску вероятностные распределения
Date of publication
18.12.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Арбузов П.А., Голембиовский Д.Ю. (2024). Калибровка распределения S_n-Джонсона будущей цены базового актива на основе цен опционов // Проблемы анализа риска. Т. 21. № 2. С. 78–93.
  2. 2. Arbuzov P. А., Golembiovsky D. Yu. (2024). Calibration of Johnson Su-distribution of future price of underlying asset based on option prices. Issues of Risk Analysis, 21 (2), 78–93 (in Russian).
  3. 3. Глухов М. (2009). Оценка опционов методом Монте-Карло // Futures & Options World. № 4. С. 38–43.
  4. 4. Glukhov M. (2009). Monte-Carlo method for option pricing. Futures & Options World, 4, 38–43 (in Russian).
  5. 5. Данилишин А.Р. (2023). Приближение Гирсановской меры с логарифмической доходностью в случае тяжеловесных распределений // Tyvbsu HCA PAH. T. 73. С. 21–30.
  6. 6. Danilishin A. R. (2023). Approximation of Girsanov’s measure with logarithmic returns in the case of heavy-tailed distributions. Proceedings of the ISA RAS, 73, 21–30 (in Russian).
  7. 7. Ермольев Ю.М. (1976). Методы стохастического программирования. М.: Наука.
  8. 8. Ermolyev Yu.M. (1976). Stochastic programming methods. Moscow: Nauka (in Russian).
  9. 9. Ширяев А.Н. (2004). Вероятность -2. Эквизиты. М.: Изд-во Московского центра непрерывного математического образования (MILHMOV).
  10. 10. Shiryaev A. N. (2004). Probability‑2. 3rd ed. Moscow: Publisher «Moscow Center for Continuous Mathematical Education» (MCCME) (in Russian).
  11. 11. Äit-Sahalia Y., Lo A.W. (1998). Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance, 53, 499–547.
  12. 12. Äit-Sahalia Y., Lo A.W. (2000). Nonparametric risk management and implied risk aversion. Journal of Econometrics, 94, 9–51.
  13. 13. Bahra B. (1997). Implied risk-neutral probability density functions from option prices: Theory and application. Bank of England, Working Paper, 66. London.
  14. 14. Bliss R., Panigirtzoglou N. (2004). Recovering risk aversion from options. Journal of Finance, 59, 407–446.
  15. 15. Brock W.A., Dechert W.D., Scheinkman J.A., LeBaron B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197–235.
  16. 16. Brockwell P.J., Davis R.A. (2002). Introduction to time series and forecasting. 2nd ed. London: Springer.
  17. 17. Dowd K. (2002). Measuring market risk. Hoboken: John Wiley & Sons Ltd.
  18. 18. Francq C., Zakoian J.-M. (2010). GARCH models: Structure, statistical inference, and financial applications. Hoboken: John Wiley & Sons Ltd.
  19. 19. Grachev O.Y. (2017). Application of time series models (ARIMA, GARCH, and ARMA-GARCH) for stock market forecasting. Seattle: Northern Illinois Univ. Honors Capstones, 177. Available at: https://huskiecommons.lib.niu.edu/cgi/viewcontent.cgi?article=1176&context=studentengagement-honorscapstones
  20. 20. Hull J.C. (2011). Options, futures and other derivative securities. 8th ed. Englewood Cliffs: Prentice Hall.
  21. 21. Jackwerth J.C. (1996). Recovering risk aversion from option prices and realized return. UC Berkeley Haas School of Business Working Paper.
  22. 22. Meyer D., Meyer J. (2005). Relative risk aversion: What do we know? Journal of Risk and Uncertainty, 31, 243–262.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library