THE CONVEXITY OF OPTION PRICES AS A CRITERION OF NO-ARBITRAGE
Table of contents
Share
QR
Metrics
THE CONVEXITY OF OPTION PRICES AS A CRITERION OF NO-ARBITRAGE
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
103-111
Abstract
It is necessary at any time for the market prices to satisfy certain conditions of a set of options with different strike prices on the same reference asset be arbitrage-free. Some conditions of this kind are the consequences of arbitrage-free requirement: monotonicity, Lipschitz-parameters and conxexity. We give the complete set of independent and verifiable convexity-type properties for option prices that are equivalent to the absence of arbitrage. A special version of Farkas lemma was used in the proof of the main result. This construction may be generalized to the dirivatives depending on several reference assets and/or with arbitrary piecewise linear payoff diagrams. It is proved that one may choose a finite set of functions on an option portfolio sufficient to verify the arbitrage-free requirement for this context.
Keywords
option, no-arbitrage pricing, convexity
Date of publication
01.04.2016
Number of purchasers
1
Views
1618
Readers community rating
0.0 (0 votes)
Cite   Download pdf

Publication text not found

References



Additional sources and materials

Galits L. (1998). Finansovaya inzheneriya. M.: TVP. Dmitruk A.V. (2012). Vypuklyj analiz. M.: Maks-Press.           

Kurochkin S.V. (2005). Funktsii vyplat, realizuemye s pomosch'yu optsionnykh strategij // Ehkonomika i matematicheskie metody. T. 41. Vyp 3. S. 135-137.       

Kurochkin S.V. (2014). Esli oni ujdut. Kakim budet rossijskij rynok aktsij v otsutstvie zarubezhnykh investorov? // Rynok tsennykh bumag. № 8. S. 57-59.   

Lyuu Yu.-D. (2010). Metody i algoritmy finansovoj matematiki. M.: Binom. Moskovskaya birzha (2015). [Ehlektronnyj resurs] Ofitsial'nyj sajt. Srochnyj rynok. Rezhim dostupa: http://moex.com/s96, svobodnyj. Zagl. s ehkrana. Yaz. rus. (data obrascheniya: iyul' 2015 g.).          

Pandzher Kh. (2005). Finansovaya ehkonomika. M.: Yanus-K. Rokafellar R. (1973). Vypuklyj analiz. M.: Mir.

Fel'mer G., Shid A. (2008). Vvedenie v stokhasticheskie finansy. Diskretnoe vremya. M.: MTsNMO.

Khall D. (2014). Optsiony, f'yuchersy i drugie proizvodnye finansovye instrumenty. M.: Vil'yams.          

Bain A. (2011). Arbitrage-Free Option Pricing by Convex Optimization. [Ehlektronnyj resurs] Rezhim dostupa: http://stanford.edu/class/ee364b/projects/2011projects/reports/bain.pdf, svobodnyj. Zagl. s ehkrana. Yaz. rus. (data obrascheniya: iyul' 2015 g.).       

Bassett G. (1997). Nonparametric Bounds for the Probability of Future Prices Based on Option Values // IMS Lecture Notes-Monograph Series. Vol. 31. P. 287-300.   

Berg M. de, Cheong O., Kreveld M., Overmars M. (2008). Computational Geometry. Algorithms and Applications. Berlin, Heidelberg: Springer-Verlag.      

Cox J., Rubinstein M. (1985). Options Markets. N.Y.: Prentice Hall.           

Fengler M. (2009). Arbitrage-Free Smoothing of the Implied Volatility Surface // Quantitative Finance. Vol. 9. No. 4. P. 417-428.             

Jeyakumar V. (2009). Farkas Lemma: Generalizations. In: “Encyclopedia of Optimization”.           

Floudas C., Pardalos P. (eds.). Berlin, Heidelberg: Springer-Verlag. P. 998-1001. 

Karatzas I., Kou S. G. (1996). On the Pricing of Contingent Claims under Constraints // The Annals of Applied Probability. Vol. 6. No. 2. P. 321-369.     

Kijima M. (2002). Monotonicity and Convexity of Option Price Revisited // Mathematical Finance. Vol. 12. No. 4. P. 411-425.              

King A., Koivu M., Pennanen T. (2005). Calibrated Option Bounds // International Journal of Theoretical and Applied Finance. Vol. 8. No. 2. P. 141-159.           

Merton R. (1973). Theory of Rational Option Pricing // The Bell Journal of Economics and Management Science. Vol. 4. No. 1. P. 141-183.            

Perrakis S., Ryan P. (1984). Option Pricing Bounds in Discrete Time // The Journal of Finance. Vol. 39. No. 2. P. 519-525.      

Roos K. (2009). Farkas Lemma. In: “Encyclopedia of Optimization”. Floudas C., Pardalos P. (eds.). Berlin, Heidelberg: Springer-Verlag. P. 995-998.       

Wang Y., Yin H., Qi L. (2004) No-Arbitrage Interpolation of the Option Price Function and Its Reformulation // Journal o Optimization Theory and Applications. Vol. 120. No. 3. P. 627-649.

Comments

No posts found

Write a review
Translate